Что делает конденсатор. Что такое конденсатор? Воздушные виды конденсаторов

Конденсатор представляет собой пассивный электронный компонент, который имеет два полюса с определенным или переменным значением емкости. Еще он обладает малой проводимостью. Важно разобраться, для чего нужно конденсатор в электродвигателе и , поскольку согласно информации, представленной на форумах, у многих людей неправильное представление по этому поводу, и они просто недооценивают значимость этого устройства.

Для чего нужен конденсатор?

Устройство используется во всех электрических и радиотехнических схемах. Для каких целей в схему включают конденсатор:

  1. Выступает в роли сопротивления, что позволяет использовать его в качестве фильтра, чтобы подавлять ВЧ и НЧ помехи.
  2. Применяют для фотовспышек и лазеров, а все благодаря способности устройства накапливать заряд и быстро разряжаться, создавая импульс.
  3. Помогает компенсировать реактивную энергию, что позволяет использовать его в промышленности.
  4. Благодаря умению накапливать и долгое время сохранять заряд конденсатор можно использовать для сохранения информации и для питания маломощных устройств.

Для чего нужен автомобильный конденсатор?

Это устройство может выполнять несколько функций в автомобиле. Например, их используют, чтобы создать высокие показатели напряженности во всей электрической системе в авто. Чаще всего конденсатор применяют для автомобильной акустики. Говоря о том, зачем нужен конденсатов в автозвуке, заметим, что его основное предназначение заключается в помощи усилителю быстро отдавать имеющуюся мощность на пиках низких частот.

Если в акустической системе конденсатор не используется, тогда звук баса не будет таким четким, а также может возникать просадка в питании всей электрической сети автомобиля. Подобные скачки напряжения в итоге могут привести к тому, что сабвуфер попросту сломается.

При выборе конденсатора для автомобиля руководствуйтесь таким правилом, что на 1 кВт мощности должно приходиться 1 Ф. Выбирайте качественный конденсаторы и лучше всего, если у них будет смеха управления зарядом.

Стоит также выяснить, как правильно установить конденсатор. Лучше всего делать это максимально близко к сабвуферному усилителю, поскольку именно на него приходится самая большая нагрузка. Расстояние не должно быть больше 60 см. Тип подключения – параллельное.

Зачем нужен конденсатор в электродвигателе?

Для правильной работы некоторых двигателей необходимо использовать пусковой и рабочий конденсаторы. Основное предназначение пускового конденсатора заключается в повышении пусковых характеристик двигателя. Это устройство помогает уменьшить время входа двигателя в его рабочий режим, одновременно увеличить крутящийся момент и облегчить процесс запуска двигателя.

Что касается рабочего конденсатора, то он вовлечен в работу на протяжении всего времени работы двигателя. Это устройство обеспечивает допустимый нормами нагрев обмоток, оптимальную нагрузочную способность и экономичность электрического двигателя. Еще он способствует максимальному крутящему моменту и увеличению срока службы двигателя.

Теперь следует выяснить, какой конденсатор нужен для двигателя. Емкость этого устройства обычно выбирается из расчета, что на 100 Вт должно приходиться 6,6 мФ. Порой данное значение является некорректным, поэтому лучше всего подбирать емкость путем экспериментов. Есть несколько способ подбора, но наиболее точные значения можно получить благодаря подключению двигателя через амперметр. Важно проконтролировать потребляемый ток при разных емкостях. Задача заключается в том, чтобы найти, при какой емкости значение тока на амперметре будет минимальным.

  • Перевод

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.


Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости ε r использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Алюминиевые электролитические


Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические



Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за состоянием отказа, бывает, что они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика


История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от лейденской банки, которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой – станиолем. Использовалась она в тех же...

0 0

Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое. Как и резисторы, конденсатор бывают разных типов и емкостей. Выпускаются в разных корпусах, самые маленькие это ЧИП SMD конденсаторы, которые применяются например в сотовых телефонах.


Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). В электронике используются конденсаторы с разными емкостями, это пикофарады, нанофарады и микрофарады.

Номинальное напряжение. Это напряжение, при котором конденсатор выполняет свои функции. Номинальное напряжение маркируют на корпусе конденсатора, при превышении этого...

0 0

Конденсаторы

Конденсаторы (постоянной и переменной емкости) имеются практически в любом электронном приборе. Основные величины, характеризующие конденсатор, - это его емкость и рабочее напряжение. Третьей важной характеристикой, определяющей область применения конденсаторов, является способность их работать в це пях с токами высокой частоты. Конструкция конденсато ров в зависимости от назначения и величины емкости может быть самой разнообразной.

Общепринятой международной единицей измерения емкости является фарада (Ф). Однако фарада как единица емкости очень велика и для практических целей мало пригодна. Поэтому емкость конденсаторов обычно из меряется в производных величинах - в микрофарадах (мкФ) при относительно большом значении емкости (1 Ф = 106 мкФ) и в пикофарадах (пФ) - при малом (1 мкФ=106пФ).

Допускаемое отклонение емкости от номинала обыч но указывают -в процентах, но на конденсаторах очень малых емкостей допускаемое отклонение от номинала...

0 0

Хотелось бы рассказать, что такое конденсатор, какие бывают конденсаторы и какую роль они выполняют.

Описание

И так давайте начнем с основного определения из википедии.

Конденса тор (от лат. condensare - «уплотнять», «сгущать») - двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Сам по себе конденсатор является пассивным электронным компонентом. В простом случае его конструкция состоит из двух электродов в форме пластин, их называют обкладками. Обкладки разделены диэлектриком, толщина которого меньше толщины самих обкладок. Применяемые сегодня конденсаторы имеют слои диэлектрика и многослойные электроды, или ленты диэлектрика и электродов, которые чередуются и свернуты в цилиндрическую форму.

Обозначается конденсатор на схемах так:

Основные параметры

Основными параметрами конденсатора являются:

Номинальная...

0 0

Конденсатор - это элемент электрической цепи, способный, при небольшом размере, накапливать электрические заряды достаточно большой величины. Самой простой моделью конденсатора является два электрода, между которыми находится любой диэлектрик. Роль диэлектрика в нем выполняют бумага, воздух, слюда и другие изолирующие материалы, задача которых не допустить соприкосновения обкладок.

Свойства

Емкость. Это основное свойство конденсатора. Измеряется в Фарадах и вычисляется по следующей формуле (для плоского конденсатора):

где С, q, U - это соответственно емкость, заряд, напряжение между обкладками, S –площадь обкладок, d – расстояние между ними, - диэлектрическая проницаемость, - диэлектрическая постоянная, равная 8,854*10^-12 Ф/м..

Полярность конденсатора;

Номинальное напряжение;

Удельная емкость и другие.

Величина емкости конденсатора зависит от

Площадь пластин. Это понятно из...

0 0

Конденсаторы (от лат. condenso - уплотняю, сгущаю) - это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет _ собой сопротивление, величина которого уменьшается с ростом частоты.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости. Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости. Условное графическое обозначение конденсатора постоянной емкости-две...

0 0

Конденсаторы

Конденсатор – один из самых распространённых радиоэлементов. Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое.

Конструктивно конденсатор состоит из двух проводящих обкладок, изолированных диэлектриком. В зависимости от конструкции и назначения конденсатора диэлектриком может служить воздух, бумага, керамика, слюда.

Основными параметрами конденсаторов являются:

Номинальная ёмкость. Ёмкость измеряют в Фарадах (Ф). Ёмкость в 1 Фараду очень велика. К примеру, земной шар имеет ёмкость менее 1 Ф, а точнее около 710 мкф. Правда, тут надо понимать, что физики любят аналогии. Говоря про электрическую ёмкость земного шара, они имеют ввиду, что в качестве примера взят металлический шар размером с планету Земля и являющийся уединённым проводником. Это всего лишь аналогия. В технике существует электронный компонент, который...

0 0

Основное назначение С1 - это перевести работу транзистора по высокой частоте в режим с "общей базой"...

Я примерно понимаю что делают все детали кроме конденсаторов... Я знаю что конденсаторы копят ток как аккумуляторы

Для начала нужно понять, что для электрического тока все элементы представляют какие-то сопротивления, каждое со своими заморочками...
Конденсатор - это особое сопротивление, это сопротивление зависит от частоты. То есть, при нулевой частоте (постоянный ток) сопротивление равно бесконечности, при повышении частоты - сопротивление конденсатора уменьшается.
Это явление широко используется в схемах. Например, в данной схеме сопротивление С1 на частотах 100 МГЦ очень маленькое, по сути почти короткое замыкание и это приводит к тому, что на этой частоте база транзистора будет соединена с минусом питания, то есть, транзистор будет включён в режиме с "общей базой".
А на звуковых частотах этот...

0 0

Суперконденсаторы для электроники (часть 1)

Международные экспертные бизнес-агентства по исследованию и анализу новых возможностей для роста корпораций в индустрии пассивных электронных компонентов выделяют суперконденсаторы (СК) как особо перспективную группу приборов. На основе комплексного анализа мирового рынка эксперты делают вывод, что, благодаря использованию нанотехнологий, технические характеристики СК быстро улучшаются, а цена одной фарады и единицы запасаемой энергии неуклонно снижается.

Эксперты разделяют мировой рынок по перспективам применения СК на три основных сегмента: применение на транспорте, в индустрии и электронике. С конца 1970-х годов СК находят широкое применение в электронике, приборы которой с повышением портативности и мобильности всё больше нуждаются в автономных источниках с высокой плотностью энергии...

0 0

10

Конденсаторы (постоянной и переменной емкости) имеются практически в любом электронном приборе. Основные величины, характеризующиеконденсатор, - это его емкость и рабочее напряжение. Третьей важной характеристикой, определяющей область применения конденсаторов, является способность их работать в цепях с токами высокой частоты. Конструкция конденсаторов в зависимости от назначения и величины емкости может быть самой разнообразной.

Общепринятой международной единицей измерения емкости является фарада (Ф). Однако фарада как единица емкости очень велика и для практических целей мало пригодна. Поэтому емкость конденсаторов обычно измеряется в производных величинах - в микрофарадах (мкФ) при относительно большом значении емкости (1 Ф = 106 мкФ) и в пикофарадах (пФ) - при малом (1 мкФ=106пФ).

Допускаемое отклонение емкости от номинала обычно указывают в процентах, но на конденсаторах очень малых емкостей допускаемое отклонение от номинала обозначают в пикофарадах. Если на...

0 0

11

ФизикаКонденсатор Конденсаторы являются непременным элементом любых электронных схем, от простых до самых сложных. Трудно себе представить какую бы то ни было электронную схему, в которой не используются конденсаторы. За два с половиной века своего существования они весьма значительно изменили свой облик и сегодня отвечают всем требованиям передовой технологии. Некоторые конденсаторы стоят не больше рубля, но их производство в мировом масштабе исчисляется миллиардами долларов. Принципы изготовления конденсаторов стали известны еще 250 лет назад, когда в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор - "лейденскую банку" - в ней диэлектриком были стенки стеклянной банки, откуда и возникло название. Эти принципы не изменились до сих пор, однако совершенствование технологий и применение новых материалов позволили значительно улучшить конструкцию конденсаторов. Суммарный заряд, который мог накапливаться в...

0 0

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео

На рис. 4.11 показана цепь электрического генератора, содержащая конденсатор. После включения цепи вольтметр, включенный в цепь, покажет полное напряжение генератора. Стрелка амперметра установится на нуле - ток через изоляцию конденсатора протекать не может.

Но проследим внимательно за стрелкой амперметра при включении незаряженного конденсатора. Если амперметр достаточно чувствителен, а емкость конденсатора велика, то нетрудно обнаружить колебание стрелки: сразу после включения стрелка сойдет с нуля, а затем быстро вернется в исходное положение.

Рис. 4.11. Цепь электрического генератора, содержащая конденсатор

Этот опыт показывает, что при включении конденсатора (при его зарядке) в цепи протекал ток - в ней происходило передвижение зарядов: электроны с пластины, присоединенной к положительному полюсу источника, перешли на пластину, присоединенную к отрицательному полюсу.

Как только конденсатор зарядится, движение зарядов прекращается.

Отключая генератор и повторно замыкая его на конденсатор, мы уже не обнаружим движения стрелки: конденсатор остается заряженным, и при повторном включении движения зарядов в цепи не происходит.

Для того чтобы вновь наблюдать отклонение стрелки, нужно замыкать генератор на разряженный конденсатор. С этой целью, предварительно отключив генератор, замкнем пластины конденсатора проволокой, при этом между зажимами конденсатора и подносимой к ним проволокой проскочит искра, тем самым легко убедиться, что при разряде конденсатора в его цепи опять протекал ток.

Если замыкание проволокой произвести так, чтобы путь зарядов проходил через амперметр, то легко увидеть, что его стрелка кратковременно отклонится. Отклонение стрелки теперь должно происходить, конечно, в другую сторону.

После разряда конденсатора можно повторить первый опыт - стрелка амперметра вновь покажет, что в цепи конденсатора передвигаются электрические заряды (проходит ток).

Попытаемся вычислить ток, протекающий в проводах, присоединенных к конденсатору.

Если за промежуток времени напряжение конденсатора увеличивается на , то, значит, за это же время его заряд увеличится на

т. е. заряд конденсатора возрастает на произведение емкости и приращения напряжения.

Предположим, что напряжение на конденсаторе емкостью возросло на 50 В за время в одну десятую долю секунды . В таком случае за это же время заряд положительной пластины конденсатора увеличился на

Но для того чтобы такой заряд прошел по проводам за время с, нужно, чтобы по ним протекал средний ток

Заряд конденсатора через резистор. Представим себе, что генератор с постоянным напряжением замыкается через резистор с сопротивлением на незаряженный конденсатор емкостью (рис. 4.12, а).

В начальный момент, пока еще конденсатор не заряжен, его напряжение равно нулю.

Значит все напряжение источника приходится на сопротивление R. А это значит, что по закону Ома в цепи будет протекать ток

С течением времени, напротив, конденсатор зарядится, его напряжение будет равно напряжению генератора, в цепи не будет тока, на резисторе не будет никакого напряжения.

Рис. 4.12. а - заряд конденсатора С через резистор с сопротивлением Слева показана электрическая схема, на которой применено общепринятое изображение конденсатора, справа показано, как с течением времени нарастает напряжение на конденсаторе «с и как постепенно убывает ток г. Эти графики построены в предположении, что конденсатор емкостью 100 мкФ заряжается от источника постоянного напряжения 100 В через сопротивление 10 000 Ом. В этом случае заряд происходит очень медленно. Если бы емкость составила всего 1 мкФ, а сопротивление 1 Ом, все происходило бы в миллион раз скорее. Для того чтобы приведенные графики оказались пригодными и для второго случая, нужно считать, что время выражено не в секундах, а в миллионных долях секунды (в общем случае при любых R и С указанные на графике значения времени следует умножить на произведение С и Я). Если напряжение источника остается 100 В, то значения тока должны быть увеличены в 10 000 раз. Например, в начальный момент будет протекать ток не 10 мА, а 100 А. Длительность и характер процесса не зависят от напряжения источника; б - разряд конденсатора С через резистор сопротивлением R. Слева показана электрическая схема. После заряда конденсатор отключается. Справа показано, как изменяются ток и напряжение конденсатора с течением времени. Графики построены для случая . Уменьшение емкости и сопротивления до значений и 1 Ом увеличило бы скорость разряда в миллион раз. Начальное; значение тока (при неизменности начального напряжения) при этом возросло бы в 10 000 раз и составило бы 100 А вместо 10 мА. При других значениях R и С время, показанное на графике, нужно умножить на произведение

При этом заряд конденсатора должен быть равен

Поставим такой вопрос: как скоро заряд в одну сотую кулона может быть сообщен конденсатору?

Если бы в цепи ток не уменьшался, а оставался равным т. е. 10 мА, то для этого потребовалось бы время, равное всего лишь 1 с:

Но сообразим, может ли долго протекать такой ток, как Если бы такой ток протекал четверть секунды, он уже сообщил бы конденсатору четверть полного заряда, а значит, поднял бы его напряжение до четверти от полных 100 В.

Но когда напряжение конденсатора возрастет до 25 В, ток должен уменьшиться до 7,5 мА. В самом деле, если напряжение генератора 100 В, а напряжение на конденсаторе 25 В, то разность между ними приходится на резистор.

Опять же по закону Ома

Но такой ток будет заряжать конденсатор медленнее, чем его заряжал ток в 10 мА.

Из приведенного рассуждения ясно, что:

нарастание напряжения на конденсаторе будет происходить, постепенно замедляясь;

ток, достигнув наибольшего значения в начальный момент, потом постепенно уменьшится;

чем больше емкость (больше заряд) и чем больше сопротивление цепи, тем медленнее происходит заряд конденсатора.

Разряд конденсатора на резистор. Если отключить генератор и через резистор с сопротивлением R замкнуть пластины конденсатора, начнется процесс его разряда. На рис. 4.12, б приведены кривые тока и напряжения конденсатора при его разряде.

Энергия электрического поля в конденсаторе. Заряженный конденсатор обладает определенным запасом энергии, заключенной в его электрическом поле.

Об этом можно судить по тому, что заряженный конденсатор, отключенный от сети, способен некоторое время поддерживать электрический ток - об этом можно судить и по искре, наблюдаемой при разряде конденсаторов.

Энергия, заключенная в конденсаторе, подводится к нему в то время, когда он заряжается от генератора. В самом деле, во время его заряда в цепи течет ток и к его зажимам приложено напряжение, а это значит, что ему сообщается энергия. Полное количество энергии, запасенной конденсатором, может быть выражено формулой

Энергия равна половине квадрата напряжения, умноженного на емкость.

Если напряжение выражено в вольтах, а емкость - в фарадах, то энергия окажется выраженной в джоулях.

Так, энергия, запасенная в конденсаторе емкостью 100 мкФ при напряжении 1000 В,

Это, конечно, не очень большая энергия (такая энергия поглощается лампочкой 50 Вт за каждую секунду). Но если конденсатор быстро разряжается (скажем, за одну тысячную долю секунды), то мощность происходящего разряда энергии, конечно, очень велика:

Поэтому понятно, что при разряде большого конденсатора звук похож на выстрел.

Быстрым разрядом энергии, запасенной в конденсаторе, иногда пользуются для сварки маленьких металлических изделий.

При разряде конденсатора на резистор энергия, заключавшаяся в электрическом конденсаторе, переходит в тепло нагреваемого резистора.

Применение конденсаторов. Применения конденсаторов в электротехнике очень разнообразны.

Рассмотрим здесь некоторые из них.

1. Конденсаторы широко применяют для целей изоляции двух цепей по постоянному напряжению при сохранении связи между ними на переменном токе. Конденсаторы изолируют постоянное напряжение, не пропуская постоянный ток. В то же время малейшее изменение напряжения изменяет их заряд и, следовательно, пропускает через них соответствующий переменный ток (рис. 4.13).

Рис. 4.13. На входе схемы между точками а и б приложено постоянное напряжение и маленькое, изменяющееся во времени напряжение - его форма Соответствует передаваемому сигналу. Конденсатор не пропускает постоянный ток (соответствующий ). Маленькое изменяющееся напряжение А и меняет заряд конденсатора. Протекающий зарядный ток создает падение напряжения на большом сопротивлении цепи. Это падение напряжения очень близко к значению переменного напряжения Таким образом, напряжение на выходе схемы между точками в и г приблизительно равно

2. На свойствах конденсатора пропускать ток под действием изменяющегося напряжения и не пропускать ток под действием постоянного напряжения основаны сглаживающие устройства (фильтры, не пропускающие переменное напряжение). На рис. 4.14 показано такое устройство - переменный ток проходит через первый резистор и конденсатор, но благодаря большой емкости конденсатора колебание напряжения на нем очень мало. На выходе схемы напряжение сглажено - оно близко к постоянному.

Еще более сильное сглаживание можно получить, включая вместо резисторов индуктивные катушки L.

Рис. 4.14. Сглаживающее устройство, содержащее R и С. Колебания напряжения на входе схемы не передаются на выход. Напряжение на выходе близко к постоянному

Как было показано в гл. 2, при протекании изменяющегося тока в них наводится ЭДС, препятствующая колебаниям тока. Такое сглаживающее устройство показано на рис. 4.15.

3. На рис. 4.16 схематически показано устройство для зажигания горючей смеси в цилиндрах автомобильного двигателя.

Рис. 4.15. Сглаживающее устройство, содержащее L и С. На вход подано напряжение, заметно колеблющееся во времени. Напряжение на нагрузке почти постоянно

Ток от батареи проходит через первичную обмотку катушки. В нужный момент он прерывается специальными подвижными контактами. Быстрое изменение тока наводит ЭДС взаимоиндукции во вторичной обмотке катушки. Число витков вторичной обмотки очень велико, и разрыв тока производится быстро. Поэтому ЭДС, наводимая во вторичной обмотке, может достигать 10-12 тыс. В. При таком напряжении происходит искровой разряд между электродами «свечи», воспламеняющей рабочую смесь в цилиндре. Прерывание контакта происходит очень часто: так, в четырехцилиндровом двигателе один разрыв контактов происходит за каждый оборот двигателя.

На схеме на рис. 4.16 показан конденсатор, присоединенный к зажимам прерывателя.

Объясним его назначение.

При отсутствии конденсатора разрыв цепи сопровождался бы образованием искры между контактами прерывателя.

Рис. 4.16. Схема цепи, служащей для электрического зажигания горючей смеси в цилиндрах автомобильного двигателя: - прерыватель. Внизу показан разрез цилиндра с поршнем, над которым смесь воздуха с бензином воспламеняется электрической искрой, проскакивающей между электродами свечи

Не говоря уже о том, что часто появляющаяся искра быстро привела бы к износу контактов, наличие искры препятствует резкому разрыву тока: ток, после того как контакты разойдутся, еще остается замкнутым через искру и лишь постепенно спадает до нуля.

Если между контактами прерывателя включен конденсатор (как это показано на рис. 4.16), картина будет иной. Когда контакты начинают расходиться, цепь тока не разрывается - ток замыкается через еще не заряженный конденсатор. Но конденсатор быстро заряжается, и дальнейшее протекание тока оказывается невозможным.

Напряжение на заряженном конденсаторе может намного превысить 12 В, так как уменьшение тока в первичной обмотке катушки наводит в ней большую ЭДС самоиндукции.

Несмотря на это между контактами прерывателя искра уже не возникает, так как к этому моменту контакты прерывателя успевают достаточно далеко отойти один от другого.

Когда контакты прерывателя вновь замкнутся, конденсатор быстро разрядится и будет готов к работе при новом разрыве контактов.

Таким образом, конденсатор предохраняет контакты от обгорания и улучшает работу системы зажигания.

На схеме на рис. 4.16 рядом с конденсатором может быть включено добавочное сопротивление. Его назначение станет ясным после того, как мы рассмотрим электрические колебания в системе индуктивность - конденсатор.

Рис. 4.17. Разряд конденсатора на индуктивность. В такой цепи возникают электрические колебания (см. рис., 4.18)

4. Одно из очень важных применений конденсаторы находят в цепях переменного тока (улучшение «косинуса фи»). Оно рассмотрено в гл. 6.

О применении конденсаторов в колебательных контурах генераторов рассказано в гл. 8.

Эти применения конденсаторов основаны на электрических колебаниях в системе LC (индуктивность и емкость).

Разряд конденсатора на индуктивность. Электрические колебания. Рассмотрим, что произойдет, если заряженный конденсатор замкнуть на катушку, обладающую индуктивностью и очень малым сопротивлением (рис. 4.17).

Возьмем конденсатор С, заряженный до напряжения в его электрическом поле при этом запасена энергия

Замкнем конденсатор на индуктивную катушку. Очевидно, что конденсатор начнет разряжаться. Однако благодаря возникающей ЭДС самоиндукции ток в катушке возрастает постепенно (§ 2.16 и 2.18). Ток первоначально был равен нулю, постепенно он возрастает. По мере протекания тока разряжается конденсатор; его напряжение при этом уменьшается.

Но мы знаем, что скорость нарастания тока - или вообще скорость изменения тока - в индуктивности пропорциональна приложенному к ней напряжению (внимательно рассмотрите, если нужно, § 2.16).

По мере уменьшения напряжения на конденсаторе уменьшеется скорость нарастания тока.

Мы сказали, что уменьшается скорость нарастания тока, но это вовсе не значит, что уменьшается сам ток.

Рис. 4.18. Изменения напряжения на конденсаторе и разрядного тока в цепи, изображенной на рис. 4.17. Приведенные здесь значения тока и напряжения соответствуют разряду конденсатора емкостью С=4мкФ, предварительно заряженного до напряжения . Индуктивность катушки L = 1,6 мГн. Этим данным соответствует период

Действительно, рассмотрим графики напряжения на конденсаторе и тока, представленные на рис. 4.18.

Сначал ток был равен нулю, но возрастал он очень быстро (это видно по крутизне подъема кривой линии, изображающей зависимость тока от времени). В конце разряда конденсатора, когда его напряжение стало равным нулю, ток перестал возрастать - он достиг наибольшего значения и уже не возрастает дальше.

Мы можем всё сказанное выразить таким уравнением:

Напряжение на конденсаторе всегда равное напряжению на индуктивности, равно скорости нарастания тока умноженной на индуктивность L.

Конденсатор разрядился.

Энергия, заключенная в электрическом поле конденсатора, покинула конденсатор. Но куда она перешла?

В случае разряда конденсатора на сопротивление энергия перешла в тепло нагретого сопротивления. Но в рассматриваемом сейчас примере сопротивление цепи ничтожно (мы пренебрегли им вовсе). Где же теперь энергия, заключавшаяся в конденсаторе?

Энергия перешла из электрического поля конденсатора в магнитное поле индуктивности.

В самом деле, в начале процесса тока в индуктивности не было; когда ток в индуктивности достиг величины в ее магнитном поле появилась энергия

На основании закона сохранения энергии нетрудно найти то наибольшее значение которое достигается током в момент равенства нулю напряжения на конденсаторе.

В этот момент в конденсаторе нет энергии, значит, вся первоначально запасенная в нем энергия перешла в энергию магнитного поля. Приравнивая их выражения, находим

Очевидно, что в любой момент времени, когда напряжение на конденсаторе меньше, чем а ток меньше, чем общая энергия равна сумме энергий электрического и магнитного полей:

Эта общая энергия равна первоначальному запасу энергии. Проверим сказанное на тех числовых значениях, которые нетрудно найти из графика, приведенного на рис. 4.18.

Каждое деление по оси, на которой откладывается время, соответствует 50 мкс (микросекунд). Найдем из графика значения тока и напряжения в момент времени 50 мкс. Они приблизительно равны

Значит, энергия электрического поля в этот момент составляет

Энергия магнитного поля в тот же момент равна

Общая энергия в этот момент времени (как и в любой другой) равна энергии, первоначально заключавшейся в конденсаторе:

Итак, мы объяснили, что происходит за промежуток времени, понадобившийся для полного разряда конденсатора.

На рис. 4.18 этому соответствуют кривые тока и напряжения, относящиеся к промежутку, обозначенному цифрой I (время от 0 до 125 мкс).

Но дело на этом не кончается. Хотя конденсатор разрядился полностью, в цепи протекает большой ток. Этот ток не может сразу исчезнуть, так как его существование связано с энергией магнитного поля.

Этот ток продолжает протекать в цепи и перезаряжает конденсатор: он продолжает уносить электроны с отрицательных пластин и переносить их на пластины положительные, точнее - переносить с пластин, которые были отрицательными, на пластины, которые были положительными. Знак заряда на пластинах теперь изменяется.

На конденсаторе появляется напряжение, препятствующее дальнейшему протеканию тока, и ток постепенно начинает уменьшаться.

К концу промежутка времени, обозначенного цифрой II (к моменту времени 250 мкс), ток спадает до нуля. Но к этому моменту конденсатор опять окажется полностью заряженным; вся энергия, перешедшая в магнитное поле, теперь вновь превратилась в энергию электрического поля.

Ток равен нулю. Конденсатор имеет такое же напряжение, как вначале (только другого знака). Все начинается снова, так, как было рассказано: конденсатор начинает разряжаться, ток начинает возрастать и т. д.

Разница только в знаке напряжения на конденсаторе и соответственно в направлении тока: ток остается отрицательным в течение промежутков времени, обозначенных цифрами III и IV.

В конце промежутка IV (т. е. после того как пройдет 500 мкс) все вернется к исходному состоянию - конденсатор заряжен положительно и тока нет.

Начиная с этого момента все повторяется сначала.

Рассмотренная картина и представляет собой электрические колебания в цепи LC.

Время, требующееся на то, чтобы после начала разряда все вернулось к исходному состоянию, называется периодом (Т).

При значениях емкости и индуктивности, для которых построены графики на рис. 4.18, один период составляет 500 мкс. Чем больше индуктивность и емкость, тем больше период колебаний.

Связь между этими тремя величинами выражается равенством

Рассмотренные колебания называют свободными (в отличие от вынужденных), так как они происходят при отсутствии постороннего источника энергии, который мог бы заставить изменяться напряжение по какому-либо другому закону.

Такие колебания будут рассмотрены ниже, в.гл. 5 и 6. Там будет показано следующее: один источник (генератор) дает напряжение, изменяющееся по закону, подобному показанному на рис. 4.18, и если к источнику подключена катушка индуктивности, то в ней будет протекать ток

здесь - наибольшие значения колеблющихся напряжения и тока; - величина, равная числу деленному на период колебаний:

Мы рассмотрели колебания, происходящие при разряде конденсатора, пренебрегая сопротивлением цепи. На самом деле в любом колебательном контуре сопротивление нельзя считать равным нулю.

Наличие небольшого сопротивления цепи приводит к постепенному затуханию колебаний, так как в сопротивлении происходит рассеяние энергии электромагнитного поля - она превращается в тепло в соответствии с законом Джоуля - Ленца.

Рис. 4.19. Затухающий колебательный разряд. Приведенный график напряжения на конденсаторе соответствует данным: , начальное напряжение на конденсаторе .

Поэтому каждый раз, когда вся энергия вновь сосредоточивается в электрическом поле конденсатора, напряжение на конденсаторе оказывается меньше:

На рис. 4.19 показана кривая напряжения на конденсаторе в цепи RLC (т. е. в цепи, содержащей кроме индуктивности и емкости также и сопротивление).

При достаточно большом сопротивлении в цепи колебания вообще не возникают. Разряд конденсатора происходит, как говорят, апериодически. Такой разряд показан на рис. 4.20. Разряд может быть сделан апёриодическйм и посредством подключения сопротивления параллельно конденсатору.

Понятие о разнообразных применениях колебательной системы (колебательного контура) будет дано в гл. 6 и 8.

Рис. 4.20. Апериодический разряд конденсатора. На графике изображены напряжения и ток в цепи конденсатора при тех же индуктивности и емкости (L = 1,6 МГн, С=4 мкФ) и при сопротивлении цепи, равном 64 Ом

Сейчас мы ограничимся указанием на то, что наличие конденсатора между контактами прерывателя в автомобиле (рис. 4.16) может служить источником колебаний, мешающих радиоприему. Эти колебания могут «гаситься», если ввести добавочный резистор (в соответствии со схемой на рис. 4.20).