Единицы живого: Цитоскелет. Актиновые филаменты и актиновый цитоскелет клетки Цитоскелет состоит из сократительных белков

Материал из Википедии - свободной энциклопедии

Цитоскеле́т - это клеточный каркас или скелет, находящийся в цитоплазме живой клетки . Он присутствует во всех клетках эукариот , причем в клетках прокариот обнаружены гомологи всех белков цитоскелета эукариот. Цитоскелет - динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление. Цитоскелет образован белками, выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты , промежуточные филаменты , микротрубочки), либо по основным белкам, входящим в их состав (актин -миозиновая система, кератины , тубулин -динеиновая система).

Цитоскелет эукариот

Актиновые филаменты (микрофиламенты)

Порядка 7 нм в диаметре, микрофиламенты представляют собой две цепочки из мономеров актина , закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином - в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт .

Промежуточные филаменты

Микротрубочки

Цитоскелет прокариот

Долгое время считалось, что цитоскелетом обладают только эукариоты . Однако с выходом в 2001 году статьи Jones и соавт. (), описывающей роль бактериальных гомологов актина в клетках Bacillus subtilis , начался период активного изучения элементов бактериального цитоскелета. К настоящему времени найдены бактериальные гомологи всех трех типов элементов цитоскелета эукариот - тубулина , актина и промежуточных филаментов . Также было установлено, что как минимум одна группа белков бактериального цитоскелета, MinD/ParA, не имеет эукариотических аналогов.

Бактериальные гомологи актина

К наиболее изученным актиноподобным компонентам цитоскелета относятся MreB, ParM и MamK.

MreB и его гомологи

Белки MreB и его гомологи являются актиноподобными компонентами цитоскелета бактерий, играющими важную роль в поддержании формы клетки, сегрегации хромосом и организации мембранных структур. Некоторые виды бактерий, такие как Escherichia coli , имеют только один белок MreB, тогда как другие могут иметь 2 и более MreB-подобных белков. Примером последних служит бактерия Bacillus subtilis , у которой были обнаружены белки MreB, Mbl (M reB -l ike) и MreBH (MreB h omolog).

В геномах E. coli и B. subtilis ген, отвечающий за синтез MreB, находится в одном опероне с генами белков MreC и MreD. Мутации, подавляющие экспрессию данного оперона, приводят к образованию клеток сферической формы с пониженной жизнеспособностью.

Субъединицы белка MreB образуют филаменты, обвивающие палочковидную бактериальную клетку. Они располагаются на внутренней поверхности цитоплазматической мембраны. Филаменты, образуемые MreB, динамичны, постоянно претерпевают полимеризацию и деполимеризацию. Непосредственно перед делением клетки MreB концентрируется в области, в которой будет формироваться перетяжка. Считается, что функцией MreB также является координация синтеза муреина - полимера клеточной стенки.

Гены, отвечающие за синтез гомологов MreB, были обнаружены только у палочковидных бактерий и не были найдены у кокков.

ParM

Белок ParM присутствует в клетках, содержащих малокопийные плазмиды. Его функция заключается в разведении плазмид по полюсам клетки. При этом субъединицы белка формируют филаменты, вытянутые вдоль большой оси палочковидной клетки.

Филамент по своей структуре представляет собой двойную спираль. Рост филаментов, образуемых ParM, возможен с обоих концов, в отличие от актиновых филаментов, растущих только на ±полюсе.

MamK

MamK - это актиноподобный белок Magnetospirillum magneticum , отвечающий за правильное расположение магнитосом. Магнитосомы представляют собой впячивания цитоплазматической мембраны, окружающие частички железа. Филамент MamK выполняет роль направляющей, вдоль которой, одна за другой, располагаются магнитосомы. В отсутствие белка MamK магнитосомы располагаются беспорядочно по поверхности клетки.

Гомологи тубулина

В настоящее время у прокариот найдены 2 гомолога тубулина: FtsZ и BtubA/B. Как и эукариотический тубулин, эти белки обладают ГТФазной активностью.

FtsZ

Белок FtsZ чрезвычайно важен для клеточного деления бактерий, он найден практически у всех эубактерий и архей. Также гомологи этого белка были обнаружены в пластидах эукариот, что является ещё одним подтверждением их симбиотического происхождения .

FtsZ формирует так называемое Z-кольцо, выполняющее роль каркаса для дополнительных белков клеточного деления. Вместе они представляют собой структуру, ответственную за образование перетяжки (септы) .

BtubA/B

В отличие от широко распространенного FtsZ, эти белки обнаружены только у бактерий рода Prosthecobacter . Они более близки к тубулину по своему строению, чем FtsZ.

Кресцентин, гомолог белков промежуточных филаментов

Белок был найден в клетках Caulobacter crescentus . Его функцией является придание клеткам C. crescentus формы вибриона. В случае отсутствия экспрессии гена кресцентина клетки C. crescentus приобретают форму палочки. Интересно, что клетки двойных мутантов, кресцентин − и MreB − , имеют сферическую форму.

MinD и ParA

Эти белки не имеют гомологов среди эукариот.

MinD отвечает за положение сайта деления у бактерий и пластид. ParA участвует в разделении ДНК по дочерним клеткам.

См. также

Напишите отзыв о статье "Цитоскелет"

Примечания

Отрывок, характеризующий Цитоскелет

– И зачем родятся дети у таких людей, как вы? Ежели бы вы не были отец, я бы ни в чем не могла упрекнуть вас, – сказала Анна Павловна, задумчиво поднимая глаза.
– Je suis votre [Я ваш] верный раб, et a vous seule je puis l"avouer. Мои дети – ce sont les entraves de mon existence. [вам одним могу признаться. Мои дети – обуза моего существования.] – Он помолчал, выражая жестом свою покорность жестокой судьбе.
Анна Павловна задумалась.
– Вы никогда не думали о том, чтобы женить вашего блудного сына Анатоля? Говорят, – сказала она, – что старые девицы ont la manie des Marieiages. [имеют манию женить.] Я еще не чувствую за собою этой слабости, но у меня есть одна petite personne [маленькая особа], которая очень несчастлива с отцом, une parente a nous, une princesse [наша родственница, княжна] Болконская. – Князь Василий не отвечал, хотя с свойственною светским людям быстротой соображения и памяти показал движением головы, что он принял к соображению эти сведения.
– Нет, вы знаете ли, что этот Анатоль мне стоит 40.000 в год, – сказал он, видимо, не в силах удерживать печальный ход своих мыслей. Он помолчал.
– Что будет через пять лет, если это пойдет так? Voila l"avantage d"etre pere. [Вот выгода быть отцом.] Она богата, ваша княжна?
– Отец очень богат и скуп. Он живет в деревне. Знаете, этот известный князь Болконский, отставленный еще при покойном императоре и прозванный прусским королем. Он очень умный человек, но со странностями и тяжелый. La pauvre petite est malheureuse, comme les pierres. [Бедняжка несчастлива, как камни.] У нее брат, вот что недавно женился на Lise Мейнен, адъютант Кутузова. Он будет нынче у меня.
– Ecoutez, chere Annette, [Послушайте, милая Аннет,] – сказал князь, взяв вдруг свою собеседницу за руку и пригибая ее почему то книзу. – Arrangez moi cette affaire et je suis votre [Устройте мне это дело, и я навсегда ваш] вернейший раб a tout jamais pan , comme mon староста m"ecrit des [как пишет мне мой староста] донесенья: покой ер п!. Она хорошей фамилии и богата. Всё, что мне нужно.
И он с теми свободными и фамильярными, грациозными движениями, которые его отличали, взял за руку фрейлину, поцеловал ее и, поцеловав, помахал фрейлинскою рукой, развалившись на креслах и глядя в сторону.
– Attendez [Подождите], – сказала Анна Павловна, соображая. – Я нынче же поговорю Lise (la femme du jeune Болконский). [с Лизой (женой молодого Болконского).] И, может быть, это уладится. Ce sera dans votre famille, que je ferai mon apprentissage de vieille fille. [Я в вашем семействе начну обучаться ремеслу старой девки.]

Гостиная Анны Павловны начала понемногу наполняться. Приехала высшая знать Петербурга, люди самые разнородные по возрастам и характерам, но одинаковые по обществу, в каком все жили; приехала дочь князя Василия, красавица Элен, заехавшая за отцом, чтобы с ним вместе ехать на праздник посланника. Она была в шифре и бальном платье. Приехала и известная, как la femme la plus seduisante de Petersbourg [самая обворожительная женщина в Петербурге,], молодая, маленькая княгиня Болконская, прошлую зиму вышедшая замуж и теперь не выезжавшая в большой свет по причине своей беременности, но ездившая еще на небольшие вечера. Приехал князь Ипполит, сын князя Василия, с Мортемаром, которого он представил; приехал и аббат Морио и многие другие.
– Вы не видали еще? или: – вы не знакомы с ma tante [с моей тетушкой]? – говорила Анна Павловна приезжавшим гостям и весьма серьезно подводила их к маленькой старушке в высоких бантах, выплывшей из другой комнаты, как скоро стали приезжать гости, называла их по имени, медленно переводя глаза с гостя на ma tante [тетушку], и потом отходила.
Все гости совершали обряд приветствования никому неизвестной, никому неинтересной и ненужной тетушки. Анна Павловна с грустным, торжественным участием следила за их приветствиями, молчаливо одобряя их. Ma tante каждому говорила в одних и тех же выражениях о его здоровье, о своем здоровье и о здоровье ее величества, которое нынче было, слава Богу, лучше. Все подходившие, из приличия не выказывая поспешности, с чувством облегчения исполненной тяжелой обязанности отходили от старушки, чтобы уж весь вечер ни разу не подойти к ней.
Молодая княгиня Болконская приехала с работой в шитом золотом бархатном мешке. Ее хорошенькая, с чуть черневшимися усиками верхняя губка была коротка по зубам, но тем милее она открывалась и тем еще милее вытягивалась иногда и опускалась на нижнюю. Как это всегда бывает у вполне привлекательных женщин, недостаток ее – короткость губы и полуоткрытый рот – казались ее особенною, собственно ее красотой. Всем было весело смотреть на эту, полную здоровья и живости, хорошенькую будущую мать, так легко переносившую свое положение. Старикам и скучающим, мрачным молодым людям, смотревшим на нее, казалось, что они сами делаются похожи на нее, побыв и поговорив несколько времени с ней. Кто говорил с ней и видел при каждом слове ее светлую улыбочку и блестящие белые зубы, которые виднелись беспрестанно, тот думал, что он особенно нынче любезен. И это думал каждый.
Маленькая княгиня, переваливаясь, маленькими быстрыми шажками обошла стол с рабочею сумочкою на руке и, весело оправляя платье, села на диван, около серебряного самовара, как будто всё, что она ни делала, было part de plaisir [развлечением] для нее и для всех ее окружавших.
– J"ai apporte mon ouvrage [Я захватила работу], – сказала она, развертывая свой ридикюль и обращаясь ко всем вместе.
– Смотрите, Annette, ne me jouez pas un mauvais tour, – обратилась она к хозяйке. – Vous m"avez ecrit, que c"etait une toute petite soiree; voyez, comme je suis attifee. [Не сыграйте со мной дурной шутки; вы мне писали, что у вас совсем маленький вечер. Видите, как я одета дурно.]
И она развела руками, чтобы показать свое, в кружевах, серенькое изящное платье, немного ниже грудей опоясанное широкою лентой.
– Soyez tranquille, Lise, vous serez toujours la plus jolie [Будьте спокойны, вы всё будете лучше всех], – отвечала Анна Павловна.
– Vous savez, mon mari m"abandonne, – продолжала она тем же тоном, обращаясь к генералу, – il va se faire tuer. Dites moi, pourquoi cette vilaine guerre, [Вы знаете, мой муж покидает меня. Идет на смерть. Скажите, зачем эта гадкая война,] – сказала она князю Василию и, не дожидаясь ответа, обратилась к дочери князя Василия, к красивой Элен.
– Quelle delicieuse personne, que cette petite princesse! [Что за прелестная особа эта маленькая княгиня!] – сказал князь Василий тихо Анне Павловне.
Вскоре после маленькой княгини вошел массивный, толстый молодой человек с стриженою головой, в очках, светлых панталонах по тогдашней моде, с высоким жабо и в коричневом фраке. Этот толстый молодой человек был незаконный сын знаменитого Екатерининского вельможи, графа Безухого, умиравшего теперь в Москве. Он нигде не служил еще, только что приехал из за границы, где он воспитывался, и был в первый раз в обществе. Анна Павловна приветствовала его поклоном, относящимся к людям самой низшей иерархии в ее салоне. Но, несмотря на это низшее по своему сорту приветствие, при виде вошедшего Пьера в лице Анны Павловны изобразилось беспокойство и страх, подобный тому, который выражается при виде чего нибудь слишком огромного и несвойственного месту. Хотя, действительно, Пьер был несколько больше других мужчин в комнате, но этот страх мог относиться только к тому умному и вместе робкому, наблюдательному и естественному взгляду, отличавшему его от всех в этой гостиной.

Цитоскелет выполняет три главные функции.

1. Служит клетке механическим каркасом, который придаёт клетке типичную форму и обеспечивает связь между мембранной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.

2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках, но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.

3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.

Микрофиламенты и промежуточные волокна.

Микрофиламенты построенные из F-актина пронизывают микроворсинки, образуя узлы. Эти микроволокна удерживаются вместе с помощью актинсвязывающих белков, наиболее важными из которых являются фимбрин и виллин. Кальмодулин и миозиноподобная АТФ – аза соединяют крайние микроволокна с плазматической мембраной. .

Клетка может менять набор синтезируемых белков цитоскелета в зависимости от условий, но процесс этот медленный. Конструкция цитоскелета способна быстро меняться даже без синтеза новых молекул, за счет полимеризации и деполимеризации нитей. В клетке все время идет обмен между нитями и раствором белков-мономеров в цитоплазме. Во многих клетках примерно половина молекул актина и тубулина находится в виде мономеров в цитоплазме и половина входит в состав нитей микрофиламентов. Клетка регулирует стабильность нитей цитоскелета, присоединяя к ним специальные белки, изменяющие скорость полимеризации. Общий принцип функционирования цитоскелета – динамическая нестабильность. Например, форму эритроцита в виде двояковогнутого диска поддерживает примембранный цитоскелет из волокон, образованных белком спектрином. Спектрин связан с белком анкерином (anchor – якорь), который соединяется с белком цитоплазматической мембраны, ответственным за транспорт анионов (Cl - , HCO - 3). Дефекты белков спектрина и анкирина вызывают необычную форму эритроцитов. Такие эритроциты очень быстро разрушаются в селезенке. Болезни, вызываемые такими нарушениями, называют наследственным сфероцитозом или наследственным эллиптоцитозом.

Рис. Цитоскелет эукариот. Актиновые микрофиламенты окрашены в красный, микротрубочки - в зеленый, ядра клеток - в голубой цвет.

Кератиновые промежуточные филаменты в клетке.

Таким образом, эукариотические клетки обладают своего рода каркасом, который с одной стороны придает им определенную форму, а с другой допускает возможность её изменения, позволяя клеткам двигаться и перемещать свои органеллы с одной части клетки в другую. Кроме основных компонентов цитоскелета важную роль в его организации и функциональной интеграции играют вспомогательные белки. Эти белки отвечают за прикрепление органелл к цитоскелету, обеспечение направленного движения органелл, координацию функций цитоскелета.

Нарушения цитоскелета. Цитоскелет не является пассивной клеточной структурой, обеспечивающей только клеточную морфологию. Доказана роль цитоскелета в двигательной функции клеток, в структуре плазматической мембраны и, что очень важно, в рецепторной функции клеток. Отмечено, что изменения цитоскелета нарушают процесс высвобождения активного вещества (гормона, медиатора и т.д.), а также изменяют рецепторную функцию клеток-мишеней. В результате нарушается рецепция клетками (в частности, нервными) различных стимулирующих веществ. Кроме того, отмечается нарушение двигательной активности клеток (например, бета-клеток поджелудочной железы), в результате возникает недостаточность инсулина. Поэтому проявления диабета довольно постоянны при хромосомных синдромах (Тернера, Клайнфельтера, Дауна и т.п.). Другим примером заболеваний с нарушением цитоскелета являются мышечная дистрофия Дюшенна и мышечная дистрофия Беккера. Обе формы являются результатом мутаций гена, кодирующего белок дистрофин. Дистрофин, в свою очередь, входит в состав цитоскелета. В результате при биопсии мышц выявляют характерные изменения – перерождение мышц и некроз волокон.

Органеллы, содержащие триплеты микротрубочек

Центриоли . Центриоль имеет цилиндрическую форму, диаметр 150 нм и длину 500 нм; стенка образована 9 триплетами (триплетный – состоящий из трёх) микротрубочек. Центриоль – центр организации митотического веретена – участвует в делении клетки. В ходе фазы S клеточного цикла центриоли удваиваются. Образовавшаяся новая центриоль расположена под прямым углом к первоначальной центриоли. При митозе пары центриолей, каждая из которых состоит из первоначальной и вновь образованной, расходятся к полюсам клетки и участвуют в образовании митотического веретена.

Базальное тельце состоит из 9 триплетов микротрубочек, расположенных в основании реснички или жгутика; служит матрицей при организации аксонемы.

Аксонема состоит из 9 периферических пар микротрубочек и двух расположенных центрально одиночных микротрубочек. В каждой периферической паре микротрубочек различают субфибриллу А и субфибриллу В. С субфибриллой А связаны так называемые наружные и внутренние ручки. В их состав входит белок динеин, обладающий способностью расщеплять АТФ. Аксонема – основной структурный элемент реснички и жгутика.

Ресничка – вырост клетки длиной 5-10мкм и толщиной 0,2 мкм, содержащий аксонему. Реснички присутствуют в эпителиальных клетках воздухопроводящих и половых путей; перемещают слизь с инородными частицами и остатками отмерших клеток и создают ток жидкости около клеточной поверхности. Под влиянием табачного дыма реснички воздухоносных путей разрушаются, что способствует задержке секрета в бронхах.

Рис. Схема поперечного сечения реснички. (Из кн. Б. Албертс и др. «Молекулярная биология клетки», том 3.)

Схема строения эукариотической эпителиальной клетки

Рисунок В.П. Андреева

Внутриклеточное пространство внутри клетки – это зона цитозоля неструктурированного мембранами внутриклеточного содержимого. Цитозоль является жидкой частью цитоплазмы и составляет около половины объема клетки. Здесь синтезируются белки, часть которых собирается на полисомах и остается в цитозоле. Цитозоль непосредственно сообщается через крупные ядерные поры с содержимым ядра. В ядре идут процессы транскрипции РНК с ДНК, причем синтезируются как нормальные клеточные, так и вирусные при вирусных инфекциях клеток. РНК из ядра транспортируется для синтеза белка в цитозоль на полирибосомы. Синтезированные белки под контролем шаперонов («катализаторов» принятия полипептидной цепью биологически значимой конформации) направляются в специальные участки эндоплазматического ретикулума. Лишние, испорченные, а также вирусные белки расщепляются в цитозоле так называемыми протеасомами. «Протеасомы» представляют собой мультипротеазные комплексы, состоящие из 28 субъединиц. Протеасомы расщепляют вирусные белки до пептидов- антигенов. Образовавшиеся пептиды- антигены вступают в связь с молекулами главного комплекса гистосовместимости (ГКГ – I), и направляются для экспрессии на клеточную мембрану. Комплексы антиген – ГКГ- I, расположенные на клеточной мембране, узнаются СД8 + Т- лимфоцитами, которые при этом активируются и обеспечивают противовирусную защиту, а также защиту от цитозольных внутриклеточных инфекций.

Внеклеточное пространство внутри клетки – это пространство (зона, компартмент) связанное с внешней внеклеточной средой и ограниченное мембранами структур и везикул, включающее в себя аппарат Гольджи, эндоплазматический ретикулум, лизосомы, эндосомы, фагосомы и фаголизосомы. Особое значение эта зона имеет в структуре антигенпредставляющих клеток, к которым относятся макрофаги и дендритные клетки (вариант лимфоцитов). На рибосомах эндоплазматической сети этих клеток синтезируются цепи молекул главного комплекса гистосовместимости (ГКГ- III). Конформация этих молекул произойдет только в том случае, если они соединятся с пептидами , образующимися в результате протеолиза (расщепления) белков – антигенов, захваченных клеткой посредством эндоцитоза или фагоцитоза. Это происходит тогда, когда фаголизосомы сливаются с везикулами, содержащими несконформированные молекулы ГКГ- II. С участием пептида молекула ГКГ- II принимает правильную конформацию, продвигается к мембране и экспрессируется на ней. Комплексы антигенов-пептидов с молекулами ГКГ- II распознают СД4 + Т – лимфоциты, которые играют главную роль в защитных реакциях от внеклеточных инфекций.

Концепции современной цитологии

Для разных клеточных типов у различных организмов характерны универсальные процессы. Это передача сигналов внутри клетки, регуляция клеточного цикла, апоптоз, тепловой шок, деградация внутриклеточных белков.

Апоптоз – биологический механизм гибели клетки по тому или иному сигналу извне или изнутри, который активирует внутри клетки определенные системы ферментов, обеспечивающих повреждение митохондрий, фрагментацию ДНК и затем фрагментацию ядра и цитоплазмы клетки. В результате клетка распадается на окруженные мембраной апоптозные тельца, которые могут фагоцитироваться соседними эпителиальными клетками и макрофагами. Содержимое погибающей клетки не попадает во внеклеточную среду. В ткани не развивается воспаление. Жизнь многоклеточных организмов невозможна без запрограммированной клеточной гибели, которая регулирует развитие, тканевый гомеостаз, клеточный ответ на повреждение ДНК и старение.

Тепловой шок

Тепловой шок может вызываться не только слишком высокой, но и слишком низкой температурой, ядами и множеством других воздействий, например, сбоем цикла суточной активности. Под воздействием этих факторов в клетке появляются белки с «неправильной» третичной структурой. Многие белки теплового шока как раз и помогают переводить в раствор и вновь сворачивать денатурированные или неправильно свернутые белки.

Реакция теплового шока сопровождается прекращением синтеза обычных для клетки белков и ускоренным синтезом различных защитных белков. Эти белки защищают от повреждений ДНК, матричные РНК, предшественники рибосом, и прочие важные для клетки структуры. Реакция теплового шока необычайно древняя и консервативная. Некоторые белки теплового шока обнаруживают гомологию у бактерий и человека.

К N-концу поврежденных, изношенных, недостроенных и функционально неактивных белков присоединяются молекулы белка-убиквитина, делая их мишенью для ферментов класса протеаз. Ассоциированный с убиквитином белок разрушается в особых мультикомпонентных комплексах, называемых протеасомами. Убиквитин – пример белка теплового шока, функционирующий в клетке и в нормальных условиях. В некоторых клетках, синтезируется до 30% аномальных белков. За открытие роли убиквитина в деградации белков была присуждена в 2004 году Нобелевская премия по химии.

Шапероны (от англ. букв.- пожилая дама, сопровождающая молодую девушку на балах) – семейство специализированных внутриклеточных белков, обеспечивающих быстрое и правильное сворачивание (фолдинг) вновь синтезированных молекул белка.

Кроме этого известны и другие белки шапероны. Например, шаперон HSP 70. Его синтез активируется при многих стрессах, в частности при тепловом шоке (отсюда и название Heart shook protein 70 – белок теплового шока). Цифра 70 означает молекулярную массу в килодальтонах. Основная функция этого белка – предотвращение денатурации других белков при повышении температуры. Шапероны – одни из самых жизненно важных белков всех живых существ. Они возникли на самых ранних стадиях эволюции, возможно еще до разделения организмов на прокариоты и эукариоты

Передача внешнего сигнала в клетку

Клетки не могут сами принять решение о том, что нужно организму. Они должны получить сигнал извне и лишь после этого внутриклеточная регуляция включится в поддержание необходимых процессов. Известные биохимики Вильям Эллиот и Дафна Эллиот приводят аналогию с мореплаванием. «Каждый корабль представляет собой организационную единицу «клетку», где поддерживается порядок и дисциплина, упорядоченно работают все механизмы и т.д. Вместе с тем, цели и маршруты плавания для кораблей определяются внешними сигналами (гормонами) высшего руководства (эндокринные железы и мозг).

Клетка обычно принимает сигнал о «состоянии дел» вокруг нее с помощью рецепторов. Н.Н. Мушкамбаров и С.Л. Кузнецов выделяют несколько механизмов действия сигнальных веществ.

1) Вещество взаимодействует с рецептором плазмолеммы, что индуцирует передачу сигнала внутрь клетки и при этом происходит химическая модификация (фосфорилирование, дефосфорилирование) определенных белков. (Фосфорильная группа несет сильный отрицательный заряд, что способствует изменению конформации белковой молекулы).

2) Вещество взаимодействует с рецептором плазмолеммы, который является одновременно и ионным каналом, открывающимся при связывании регулятора.

3) Внеклеточный регулятор проникает внутрь клетки мишени, связывается с цитоплазматическим или ядерным белком-рецептором и, выступая после этого как транскрипционный фактор, влияет на экспрессию определенных генов. Так действуют гормоны стероидной природы (например, мужские и женские половые гормоны).

В качестве сигнальных молекул иногда выступают простагландины и NO (оксид азота). Они проникают в клетку-мишень и влияют на активность регуляторных ферментов. Конечный результат – модификация определенных белков.

Наиболее часто используемым является механизм первого типа. При этом конкретные способы его реализации весьма разнообразны.

Передача сигналов внутри клетки

Водорастворимые сигнальные молекулы, в том числе известные нейромедиаторы, пептидные гормоны и факторы роста, присоединяются к специфическим белковым рецепторам на поверхности клеток-мишеней. Поверхностные рецепторы связывают сигнальную молекулу (лиганд), проявляя большое сродство к ней, и это внеклеточное событие порождает внутриклеточный сигнал, изменяющий поведение клетки.

Рецепторы являются интегральными мембранными белками.

Существует множество сигнальных путей, начинающихся от мембранного рецептора.

(Изменение мембранных рецепторов сопровождается возникновением различных болезней. Так, например, дефект в рецепторе мужского полового гормона тестостерона приводит к тому, что особи с мужским генотипом (2А+ХУ) выглядят как самки; все млекопитающие, не подвергнувшиеся в эмбриональный период воздействию тестостерона, развиваются по женскому пути. Мутантные самцы имеют нормальные семенники, вырабатывающие тестостерон, но ткани этих самцов не реагируют на гормон из-за дефектности соответствующих рецепторов. В результате у таких самцов развиваются все вторичные половые признаки самок и их семенники не опускаются в мошонку, а остаются в брюшной полости. Этот синдром (тестикулярной феминизации или сидром Морриса) встречается у мышей, крыс, крупного рогатого скота, а также у человека. Хотя изменен только ген, кодирующий рецептор тестостерона, затронутыми оказываются все разнообразные типы клеток, в норме реагирующие на этот гормон. Таким образом, один внешний сигнал может включать различные наборы генов в клетках разного типа.

Подавляющее большинство поверхностных рецепторов для гидрофильных сигнальных молекул, связав лиганд на внешней стороне мембраны, претерпевает конформационное изменение. Это изменение создает внутриклеточный сигнал, изменяющий поведение клетки-мишени. Внутриклеточные сигнальные молекулы часто называют вторыми посредниками (мессенджерами, англ. messenger – посыльный), считая «первым посредником» внеклеточный лиганд. К вторичным (внутриклеточным) посредникам относят циклический аденозинмонофосфат (цАМФ), циклический гуанозин 3΄,5΄ - монофосфат (цГМФ), катионы кальция, инозит-1,4,5-трифосфат, диацилглицерин. Кроме этого, известны сигнальные пути опосредованные белками, липидами, в том числе свободными жирными кислотами, оксидом азота (NO), а также пути не содержащие вторичного посредника. Примером последнего варианта является влияние γ-интерферона на транскрипцию определенных генов, с антивирусной направленностью. Внутриклеточные сигнальные пути регуляции клеточной активности очень сложны, до конца не изучены и многие открытия еще впереди. Достаточно сказать, что внутриклеточный сигнальный путь с участием инсулина, несмотря на многолетние исследования, еще не расшифрован.

— это система нитевидных структур, пререважно являются упорядоченными полимерами белков одного класса, имеющаяся в клетках бактерий и архей. Все исследованные (на 2006 год) белки цитоскелета бактерий способны к самоогрганизации в длинные филаменты in vitro.

Цитоскелет прокариот был впервые открыт в начале 1990 годов, когда было установлено, что почти все бактерии и большинство архей содержат белок FtsZ, который является гомологом тубулина, и может полимеризоваться в филаменты, образующие кольцо (Z-кольцо) во время клеточного деления. Позже были обнаружены и прокариотические гомологи актина. Эти открытия изменили представления о том, что именно отсутствие цитоскелета является важнейшей причиной меньших размеров и простой организации прокариот по сравнению с эукариот. Зато сейчас допускается, что относительная протстота бактерий и архей связана с видсутнсю белков-моторов (по крайней мере до сих пор они обнаружены не были), что «ходят» вдоль филаментов цитоскелета и обеспечивают транспорт различных структур, а также и локомоциях всей клетки.

Наличие у прокариот гомологов актина и тубулина позволяет предполагать, что эти два класса нуклеотид-связывающих белков, которые могут образовывать догви филаменты, возникли в процессе эволюции достаточно давно, еще до появления эукариот. Однако, ядерные и безъядерного организмы по-разному их используют, например, в Цитокинез бактерий задействован гомолог тубулина FtsZ, тогда как у эукариот эту функцию осуществляют актиновые филаменты, в различии молекул ДНК при делении у бактерий наоборот участвуют гомологи актина, а у эукариот — микротрубочки с тубулина, образующие веретено деления. Также у прокариот был обнаружен по крайней мере один класс белков, которые могут считаться гомологами белков промежуточных филаментов и один класс белков цитоскелета — АТФазы типа Walker A (WACA — MinD и PraA) не имеющих соответствий у эукариот.

Гомологи актина

В 2001 году Джонс (англ. Jones) и спивробинтникы обнаружили, что у бактерии Bacillus subtilis присутствуют белки гомологи актина, которые формируют длинные спиральные структуры. Это открытие дало начало интенсивному развитию исследований в области цитоскелета прокариот, в результате чего было обнаружено много других гомологов актина. Для всех этих белков характерно наличие актинового АТФазного домена. Большинство из них, как и актин в еукароит, является частью цитоскелета, однако некоторые имеют другие функции, например FtsA, участвующий в клеточном делении, шаперон DnaK и гексокиназы. Гомологи актина бактерий имеют похожую пространственное строение, но в основном довольно сильно отличаются по аминокислотной последовательности (5-10% идентичности). Также эти белки имеют отличные характеристики динамики полимеризации и свойств филаментов, которые они образуют. Очевидно, что в отличие, от эукариот, которые используют один и тот же актин для самых разных потребностей клетки, бактерии имеют много вариантов подобных белков, каждый из которых специализирован на выполнении отдельной функции.

MreB и его гомологи

MreB (англ. M u r ein cluster B) и его гомологи — белки распространены среди бактреий, имеющих палочковидную или спиральную форму, и отсутствуют в кокков. Некоторые бактерии, например Escherichia coli и Caulobacter crescentus, содержащие только ген белка MreB, тогда как другие, в частности Bacillus subtilis, кроме него должны также гены его гомологов Mbl (англ. M re B — l ike) и MreBH (англ. MreB h omolog). Эти белки обеспечивают поддержание палочковидной формы клетки, ее полярности, а также различия копий бактериальной ДНК при делении.

Структура и динамика филаментов MreB и его гомологов

In vivo белок MreB и его гомологи образуют длинные спиральные филаменты расположены вдоль бактериальной клетки, они могут объединяться в крепкие и довольно гибкие пучки. Такие филаменты являются динамическими структурами, продолжительность их полжизни обычно не превышает нескольких минут. Кроме того, в некоторых видов, в частности C.crescentus и Rhodobacter sphaeroides филаменты MreB меняют свое расположение в течение клеточного цикла: при делении они концентрируются в центральной части клетки и образуют кольцо. Однако, поскольку мутанты с делецией гена mreB не теряют способность к цитокинеза, очевидно белок MreB не является необходимым для этого процесса.

Как было показано в экспериментах на белках бактерии Thermotoga maritima мономерные единицы MreB способны к самоорганизации in vitro в длинные линейные филаменты, которые состоят из двух протофиламентив расположенных параллельно. Итак по строению филаменты MreB отличаются F-актина, образованного двумя цепями спирально закрученными друг вокруг друга. Для полимеризации MreB необходимо наличие в среде АТФ, однако она происходит одинаково успешно и в присутствии ГТФ (в отличие от актина, который полимеризуется только при наличии АТФ). Это связано с тем, что новые субъединицы включаются в состав полимера только в форме связанной с нуклеотидтрифосфатом, позже происходит гидролиз связанного АТФ или ГТФ к АДФ или ГДФ соответственно.

Функции MreB и его гомологов

Одной из основных функций филаментов MreB и гомологичных белков является поддержание палочковидной или спиральной формы бактериальной клетки. Мутации, которые порушуюють экспрессию этих белков, приводят к выраженной изменения формы бактерий (как правило, они превращаются в округлые клетки, или в случае Mbl — в клетки неправильной формы). Однако филаменты MreB НЕ служат непосредственно каркасом для пидримання формы клетки, в свою очередь, располагаясь по спирали вдоль нее они являются сайтами для прикрепления ферментов, синтезирующих пептидогликан клеточной стенки. Таким образом они регулируют характер отложения новых элементов к оболочке бактерий, которая собственно и является определяющим фактором в поддержании постоянной формы. Подобным образом микротрубочки растительной клетки влияют на ее форму, направляя включения молекул целлюлозы в клеточную стенку. Во многих бактерий (в том числе и в E.coli и B.subtilis) ген mreB является частью оперона, в состав которого входят также гены mreC и mreD. Этот оперон входит в большого кластера генов, необходимых для биосинтеза пептидогликана. Продукты генов mreC и mreD — это белки внутренней мембраны грам-отрицательных бактерий, они взаимодействуют с белком MreB и участвуют в организации его комплекса с ферментами, участвующими в биосинтезе муреин, такими как муреинтранспептидаза PBP2. Также в состав этого комплекса входят трансмембранные белки RodZ и RodA.

Филаменты MreB также участвуют в определении некоторых аспектов полярности клетки, в частности концентрации на одном или обоих полюсах некоторых белков, например тех, что отвечают за хемотаксис, подвижность, секрецию и вирулентность.

Еще одной функцией MreB и его гомологов является участие в различии копий бактериальной хромосомы во время деления. Среди мутантов, в которых этот белок отсутствует, были обнаружены клетки с несколькими нуклеоидом в цитоплазме, а также и клетки, которые не имели хромосом. Местом прикрепления белков MreB к бактериальной ДНК является точка oriC, присоединение происходит либо непосредственно, либо при участии других белков. При разделе филаменты цитоскелета обеспечивают различия точек oriC двух копий ДНК в противоположных концов клетки, механизм этого процесса пока (2006 год) не выяснен. Также неизвестно каким образом возникает расхождение хромосом в кокков, в которых отсутствует ген mreB и его гомологи.

Белок разделения плазмид ParM

Многие малокопийних (~ 1-5 копий) плазмид бактерий имеют специальные системы, обеспечивающие их различия после репликации. Эти механизмы необходимы для того, чтобы после разделения каждая из дочерних клеток получила по крайней мере одну молекулу плазмидной ДНК. Известно три типа систем, обеспечивающих различия малокопийних плазмид, в каждой из которых используются различные моторные белки (тип I — АТФазы типа Walker A или ParA-образные белки, тип II — гомологи тубулина или TubZ-образные белки, тип III — гомологи актина или ParM-образные белки). Белок ParM (от англ. Par titioning m otor) был впервые обнаружен при исследовании пламзиды R1 E.coli. Сейчас эта система сегрегации плазмидной ДНК является лучше изученной. Похожая система была обнаружена и в других плазмидах, в частности тех, которые отвечают за распространение устойчивости ко многим препаратам (англ. Multidrug resistance).

Структура и динамика филаментов ParM

Как и все элементы цитоскелета филаменты ParM состоят из мономерных белковых субъединиц. Эти субъединицы способны к полимеризации in vitro в присутствии АТФ или ГТФ. Образующиеся нити состоят из двух протофиламентив, закрученных друг вокруг друга (структура похожа на F-актина). В живых клетках мономеры ParM формируют длинные неразветвленные филаменты, которые размещаются вдоль оси бактерии. В отличие от актина и MreB и его аналогов ParM не образует пучков.

Полимеризация и диссоциации мономеров ParM зависит от присоединения и гидролиза АТФ. Новые субъединицы включаются в состав филаментов в АТФ-связанной форме, причем присоединение может происходить на обоих концах филаментов. Одновременно с включением новой ParM-АТФ субъединицы происходит гидролиз АТФ в последний присоединенной белковой молекуле. Таким образом весь филамент состоит из белков ParM-АДФ, и только на концах находятся ParM-АТФ субъединицы, которые «КЭПУ» всю структуру стабилизируя ее.

При отсутствии соответствующей плазмиды полимеризация филаментов ParM продолжается пока они не достигают определенной критической длины. После этого они начинают очень быстро диссоциировать, причем скорость этого процесса примерно в 100 раз превышает таковую для F-актина, то есть наблюдается так называемая динамическая нестабильность, по которой эти элементы больше напоминают микротрубочки эукариот.

Принцип функционирования филаментов ParM

Ген parM входит в локуса par плазмиды R1, кроме него здесь также содержится участок parC (от англ. C entromere), что играет роль аналогичную центромеры в хромосомах эукариот, а также ген parR, продукт которого ParR (от англ. R epressor) присоединяется к участку parC и осуществляет ауторегуляцию транскрипции локуса par, а также служит адаптером для присоединения белка ParM.

После репликации плазмиды R1 до обоих ее копий в области parC присоединяется белок ParR. В таком состоянии он может связывать и стабилизировать филаменты ParM, которые постоянно собираются и разбираются в цитоплазме. После этого полимерные нити ParM начинают видовжуватись, присоединяя на каждом конце новые мономеры. Этот процесс сопровождается гидролизом АТФ. Вследствие удлинения филаментов две плазмиды, которые присоединены к его краям, розштовхуються в разные стороны пока не достигают полюсов клетки. После этого происходит диссоциация полимера ParM.

Белок организации магнетосом MamK

Еще один прокароитичний гомолог актина MamK участвует в организации мембран магнетосом. Магнетосомы — это окружены мембраной органеллы бактерий родов Magnetospirillum и Magnetococcus, содержащие кристаллы магнетита и помогают бактерии ориентироваться в геомагнитном поле. В клетке магнетосомы расположены в ряд, в результате чего они могут функционировать как игла магнита. Такое расположение обеспечивается филаментами белка MamK, к которому эти мембранные пузырьки крепятся.

Гомологи тубулина

В большинстве прокариот также имеющиеся гомологи еукароитичного белка тубулина, из которого состоят микротрубочки. Лучше изученным из этих гомологов является блилок FtsZ, участвующий в Цитокинез. Тубулин и FtsZ имеют довольно мало идентичности в аминокислотной последовательности, консервативным является только ГТФазний домен, однако по пространственной структуре они похожи. Также в отдельных представителей бактерий и архей были обнаружены другие гомологи тубулина: например белки BtubA / BtubB Prosthebacter dejoneii, а также TubZ и RepX, кодируемых плазмидными генами бактерий рода Bacillus.

FtsZ и Z-кольцо

FtsZ FtsZ (англ. F ilamenting t emperature- s ensitive mutant Z) — один из первый выявленных у прокариот белок цитоскелета. Он есть в клетках практически всех исследованных бактерий и архей, а также в эукариотических органеллах, происходящих от прокариот, в частности пластидах. Этот белок участвует в формировании Z-кольца, обеспечивает цитокинез во время деления клетки. Кроме FtsZ, в этом процессе задействована также большое количество вспомогательных белков, в частности тех, которые принимают участие в синтезе клеточной стенки бактерий.

Структура и динамика филаментов FtsZ

Мономеры FtsZ формируют in vitro протофиламенты, состоящие из одного ряда этих белков. Протофиламенты НЕ объединяются в структуры похожи на микротрубочек, хотя иногда и спострегиаеться формирования пучков или листов. FtsZ полимеризуется в активной ГТФ-связанной форме, однако, в отличие от тубулина, этот белок обычно не гидролизует ГТФ после включения его в состав протофиламенту. Таким образом, в отличие от протофиламентив микротрубочек, которые почти полностью состоят из ГДФ-тубулина, и только на концах имеют кепи с ГТФ-тубулина, в протофиламентах FtsZ соотношение ГТФ-связанных субъединиц к ГДФ-связанных составляет 80:20.

При определенных условиях в протофиламентах FtsZ может происходить гидролиз ГТФ, в таком случае их форма преимущественно изменяется от прямой к изогнутой, и происходит дестабилизация полимера, в результате чего он может распадаться на мономеры. Протофиламенты FtsZ являются динамическими структурами, они постоянно обмениваются субъединицами с пулом свободных мономеров.

Структура Z-кольца

Часть белка FtsZ в клетке участвует в формировании Z-кольца, тогда как остальные находятся в цитоплазме в мономерной форме, или в форме коротких филаментов. Как было показано с помощью флуоресцентной микроскопии (с использованием меченых антител или FtsZ слитого с GFP), Z-кольцо хорошо заметно в центре большинства клеток. Во время клеточного деления оно сокращается, таким образом обеспечивая цитокинез. Одновременно с уменьшением Z-кольца в материнской клетке, FtsZ начинает полимеризоваться в центре дочерних клеток.

Z-кольцо не состоит из одного замкнутого в протофиламенту FtsZ, как показывают многочисленные исследования, количество мономеров FtsZ в Z-кольце достаточное для того, чтобы сделать примерно 2,5 витков вокруг внутреннего диаметра клетки. Поскольку отдельные протофиламенты FtsZ значительно короче окружность клетки, была предложена модель строения Z-кольца, согласно которой оно склкдаеться из большого количества коротких профиламентив перекрывающихся. Эта модель была подтверждена данными полученными с помощью электронной криотомографии. Однако существуют также и альтернативные модели строения Z-кольца, одна из которых предусматривает, что протофиламенты FtsZ взаимодействуют конец к концу и образуют непрерывную спираль.

Для обеспечения цитокинеза Z-кольцо должно каким-то образом крепиться к плазматической мембраны. Эту роль в большинстве бактерий выполняет белок напивинтегральний белок FtsA и трансмембранный белок ZipA, цитоплазматические домены которых крепятся к FtsZ.

Модели функционирования Z-кольца во время цитокинеза

Механизм, по которому происходит сокращение Z-кольца во время цитокинеза сих пор остается не выясненным. Существовало несколько гипотез, описывали это выше:

  • Модель ковазння: так как, скорее всего, Z-кольцо слкадаеться с протофиламентив, которые могут взаимодействовать латерально, по аналогии с актина и миозина эукариот, предполагается, что существует определенный моторный белок, который может обеспечивать скольжение этих протофиламентив друг друга. По мере этого процесса также происходит деполимеризация FtsZ, таким образом Z-кольцо укорачивается и тянет плазматическую мембрану за собой. Главным недостатком этой модели является то, что никаких таких моторных белков не было найдено у одного из видов бактерий.
  • «Каркасная» модель: протофиламенты FtsZ могут играть пассивную роль в Цитокинез. Согласно этой модели они только привлекают ферменты синтеза клеточной стенки, к месту, где должен состояться цитокинез. Новые слои пептидогликана, откладываемых обеспечивают вгиннання плазматической мембраны, вследствие чего и происходит скрочення Z-кольца. Эта модель не в состоянии объяснить механизма цитокинеза у микобактерий, в частности Mycobacterium tuberculosis, в которых пептидогликан вообще отсутствует в килтинний стенке.
  • Модель «повторяющегося сжатия» — наиболее признана в настоящее время. Этот механизм не предусматривает участия каких белков-моторов, а говорит о том, что протофиламенты FtsZ сами могут генерировать силу, необходимую для цитокинеза. Считается, что филаменты в составе Z-кольца присоединяются к цитоплазматической мембраны в ГТФ-связанной форме, в таком случае они имеют прямую конформацию. Впоследствии в них происходит гидролиз ГТФ, что приводит к сгибанию филаментов. Когда это происходит, мебмрана клетки, присоединена к филаментов белками FtsA или ZipA, несколько прогибается. Такое последовательное сжатие мембраны и приводит к цитокинеза. Только последние его этапы не могут происходить по такому механизму, и возможно, проходят без участия белка FtsZ.

Другие гомологи тубулина

Секвенирование геномов многих бактерий позволило выявить некоторые тубулиноподибни белки отличаются от FtsZ. В частности, в бактерии Prosthebacter dejoneii были найдены два белка BtubA и BtubB (англ. B acterial tub ulin), которые являются гомологами соответственно α и β тубулина. Во время полимеризации в присутствии ГТФ они образуют гетеродимера, как и α и β тубулин. Сейчас функция этих белков неизвестна.

Интересно, что эти белки по аминокислитною последовательностью значительно ближе к эукариотических тубулинов, чем к их прокариотических гомолога FtsZ. Считается, что бактерия P. dejoneii получила гены этих белков в результате горизонтального переноса от эукариот.

Другой класс гомологов тубулина был обнаружен в больших плазмидах бактерий рода Bacillus, зокема:

  • Белок TubZ Bacillus thuringiensis, кодируемый генами плазиды pBtoxis;
  • Белок RepX закодирован в плазмиде pX01 Bacillus anthracis.

Оба эти белки способны образовывать длинные филаменты, в результате полимеризации в присутствии ГТФ, и необходимы для стабильного поддержания соответствующей плазмиды в клетке. Они могут участвовать в сегрегации копий плазмид, репликации плазмид или в обоих процессах.

Кресцентин — гомолог белков промежуточных филаментов

Кресцентин — это белок промежуточных филаментов, найденный в бактерии Caulobacter crescentus и других бактерий этого рода. Этот белок утоврюе длинную изогнутую нитевидные структуры, которая размещаются вдоль внутреннего края комоподибнои бактерии и обеспечивает поддержание такой формы. При отсутствии кресцентину бактерии становятся плачкоподибнимы, но житттездатности не теряют.. Кресцентин имеет 25% идентичности и 40% гомологичности в аминокислотной последовательности с эукариотическими белками промежуточных филаментов, а также похожую организацию белковых доменов — в частности наличие центрального домена двойной спирали (англ. Coiled coil). Полимеризация мономеров кресцентину, как и в случае еукариотинчних белков промежуточных филаментов, проходит без необходимости нуклеотидах. Интересно, что для пидтирмання формы C.crescentus кроме кресцентину необходим также гомолог актина MreB, при его отсутствии клетки становятся сферическими, несмотря на присутствие кресцентину.

Цитоскелетного АТФазы типа Walker A

Кроме гомологов эукариотических актина, тубулина и белков промежуточных филаментов, у бактерий также обнаружены компоненты цитоскелета, не имеющие аналогов в клетках ядерных. В частности таковы белки WACA (англ. Walker A cytoskeletal ATPase — цитоскелетного АТФазы типа Walker A), относящихся к функционально разнородной семьи АТФаз, имеющие в своей структуре консервативной аномальный домен Walker A и димерезуються в присутствии АТФ.

Белки WACA в АТФ-связанной форме могут образовывать полимеры на определенных поверхностях, например, на клеточной мембране, и считаются элементами цитоскелета. К этому классу относится белок MinD, участвующий в определении места, в котором будет проходить цитокинез во время разделения, и белки ParA, Soj, а также SopA и ParF, которые обеспечивают различия (сегрегацию) копий плазмид и бактериальной хромосомы. Несмотря на то, что они имеют разные функции, эти белки имеют очень похожую пространственное строение и высокий уровень гомологии в аминокислотной последовательности. Все WACA способны к гидролизу АТФ, их каталитическая активность регулируется путем взаимодействия с активирующими белками: для MinD — это белок MinE, а для ParA — ДНК-связывающий белок ParB. Также эту семью белков объединяет то, что за всеми ними наблюдается динамическая поведника in vivo: полимеризоваться формы этих белков осциллируют между определенными клеточными участками. Например, MinD полимеризуются то на одном полюсе клетки, то на другом, продолжительность такого цикла составляет 40-50 сек. Белки ParA и Soj осциллируют преимущественно между двумя нуклеоидом перед делением, а временные интервалы «перепрыгивание» у них менее регулярные (от нескольких минут до часа).

Система MinCDE

Механизм осцилювання лучше изучен на примере системы MinCDE, в состав которой входит WACA MinD. Эта система необходима клетке для того, чтобы точно разместить Z-кольцо в центральной части для правильного прохождения цитокинеза. В ее состав входят три белка:

  • MinC — ингибитор полимеризации FtsZ;
  • MinD — цитоскелетного белок WACA, что полимеризуется на цитоплазматической мембране;
  • MinE — белок, стимулирующий гидролитическую активность MinD.

В E.coli эта система функционирует следующим образом: после присоединения молекулы АТФ MinD полимеризуется на плазматической мембране, образуя спирали. В такой активированной форме он связывает белок MinC, из-за чего в этом Конкрет месте подавляется образование Z-кольца. Также MinD-АТФ может взаимодействовать с MinE, что стимулирует гидролиз АТФ, после этого инактивированный MinD отсоединяется от мембраны и может диссоциировать в другое место. Распадается он преимущественно на противоположный полюс клетки, где не белка MinE, там начинается полимеризация нового комплекса, которая продолжается до тех пор, пока не закончится деполимеризация старого. А когда она начинает подходить к концу, то белок MinE высвобождается и начинает «разрушать» новообразованный комплекс MinD / MinC. Таким образом этот комплекс «скачет» от одного полюса к другому с переиодичнистю 40-50мин, и не затрагивает только центральный участок, где и происходит образование Z-кольца, поскольку там ее ничего не подавляет.

Несмотря на то, что MinD очень консервативным белком среди прокариот, у разных видов он функционирует по-разному, например в B.subtilis не происходит осцилювання: MinD постоянно присоединен к клеточным полюсов с помощью другого белка DivIVA. Кроме того, бактерии имеют «запасные» механизмы пространственного регулирования цитокинеза, которые действуют даже при отсутствии MinCDE, например механизм «избегание нуклеоида»: формирование Z-кольца подавляется вблизи нуклеоида.

В некоторых бактерий вообще отсутствует и система MinCDE и механизм «избегание нуклеоида», например в C.crescentus место прохождения цитокинеза определяется с помощью белка MipZ (что имеет сходство с ParA). Этот белок полимеризуется вблизи точки ori и также подавляет образование Z-кольца.

Использованные источники

  1. Shih YL, Rothfield L (2006). The bacterial cytoskeleton. Microbiol Mol Biol Rev 70. с. 729-54. doi: 10.1128 / MMBR.00017-06. PMID 16959967.
  2. Bi EF, Lutkenhaus J (1991). FtsZ ring structure associated with division in Escherichia coli. Nature 354. с. 161-4. doi: 10.1038 / 354161a0. PMID 1944597.
  3. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007). Molecular Biology of the Cell (изд. 5th). Garland Science. ISBN 978-0-8153-4105-5.
  4. Gitai Z (2005). The new bacterial cell biology: moving parts and subcellular architecture. Cell 120.
  5. Gerdes K (2009). RodZ, a new player in bacterial cell morphogenesis. The EMBO Journal 28. с. 171 — 172. doi: 10.1038 / emboj.2008.287. PMID 19194484.
  6. Salje J, Gayathri P, Löwe J (2005). The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Cell 120. с. 577-86. doi: 10.1016 / j.cell.2005.02.026. PMID 15766522.
  7. Taoka A, Asada R, Wu LF, Fukumori Y (2007). Polymerization of the actin-like protein MamK, which is associated with magnetosomes. J Bacteriol 189. с. 8737-40. doi: 10.1128 / JB.00899-07. PMID 17905974.
  8. Thanbichler M, Shapiro L (2008). Getting organized — how bacterial cells move proteins and DNA. Nat Rev Microbiol 6. с. 28-40. doi: 10.1038 / nrmicro1795. PMID 18059290.
  9. Pogliano J. (» The bacterial cytoskeleton. Curr Opin Cell Biol 20. с. 19-27. doi: 10.1016 / j.ceb.2007.12.006. PMID 18243677.
  10. Erickson HP, Anderson DE, Osawa M (2010). FtsZ in Bacterial Cytokinesis: Cytoskeleton and Force Generator All in One. Microbiol Mol Biol Rev 74. с. 504-28. doi: 10.1128 / MMBR.00021-10. PMID 21119015.
  11. Li Z, Trimble MJ, Brun YV, Jensen GJ (2007). The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 26. с. 4694-708. doi: 10.1038 / sj.emboj.7601895. PMID 17948052.

Цитоскелет - совокупность нитевидных белковых структур – микротрубочек и микрофиламентов, составляющих опорно-двигательную систему клетки. Цитоскелетом обладают только эукариотические клетки, в клетках прокариот (бактерий) его нет, что является важным различием этих двух типов клеток. Цитоскелет придаёт клетке определённую форму даже при отсутствии жёсткой клеточной стенки. Он организует движение органоидов в цитоплазме (т. н. течение протоплазмы), лежащее в основе амёбоидного движения. Цитоскелет легко перестраивается, обеспечивая в случае необходимости изменение формы клеток. Способность клеток изменять форму обусловливает перемещение клеточных пластов на ранних стадиях зародышевого развития . При делении клетки (митозе ) цитоскелет «разбирается» (диссоциирует), а в дочерних клетках вновь происходит его самосборка.

Цитоскелет выполняет три главные функции.

1. Служит клетке механическим каркасом, который придает клетке типическую форму и обеспечивает связь между мембраной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.

2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках, но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.

3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.

24. Роль метода иммуноцитохимии в изучение цитоскелета. Особенности организации цитоскелета в мышечных клетках.

Иммуноцитохимический анализ - метод, позволяющий проводить иммунологический анализ цитологического материала в условиях сохранения морфологии клеток. ИЦХ – один из множества видов иммунохимического метода: иммуноферментного, иммунофлюоресцентного, радиоиммунного и т.п.Основой ИЦХ-метода является иммунологическая реакция антигена и антитела.

Цитоплазма эукариотических клеток пронизана трехмерной сеткой из белковых нитей (филаментов), называемой цитоскелетом. В зависимости от диаметра филаменты разделяются на три группы: микрофиламенты (6-8 нм), промежуточные волокна (около 10 нм) и микротрубочки (около 25 нм). Все эти волокна представляют собой полимеры, состоящие из субъединиц особых глобулярных белков.

Микрофиламенты (актиновые нити) состоят из актина - белка, наиболее распространенного в эукариотических клетках. Актин может существовать в виде мономера (G-актин, «глобулярный актин») или полимера (F-актин, «фибриллярный актин»). G-актин - асимметричный глобулярный белок (42 кДа), состоящий из двух доменов. По мере повышения ионной силы G-актин обратимо агрегирует, образуя линейный скрученный в спираль полимер, F-актин. Молекула G-актина несет прочно связанную молекулу АТФ (АТР), которая при переходе в F-актин, медленно гидролизуется до АДФ (ADP), т.е. F-актин проявляет свойства АТФ-азы.

Б. Белки промежуточных волокон

Структурными элементами промежуточных волокон являются белки, принадлежащие к пяти родственным семействам и проявляющие высокую степень клеточной специфичности. Типичными представителями этих белков являются цитокератины, десмин, виментин, кислый фибриллярный глиапротеин [КФГП (GFAP)] и нейрофиламент. Все эти белки имеют в центральной части базовую стержневую структуру, которая носит название суперспирализованной α-спирали. Такие димеры ассоциируют антипараллельно, образуя тетрамер. Агрегация тетрамеров по принципу "голова к голове" дает протофиламент. Восемь протофиламентов образуют промежуточное волокно.

В отличие от микрофиламентов и микротрубочек свободные мономеры промежуточных волокон едва ли встречаются в цитоплазме. Их полимеризация ведет к образованию устойчивых неполярных полимерных молекул.

В. Тубулин

Микротрубочки построены из глобулярного белка тубулина, представляющего собой димер α- и β-субъединиц. Тубулиновые мономеры связывают ГТФ (GTP), который медленно гидролизуется и ГДФ (GTP). С микротрубочками ассоциируют два вида белков: структурные белки лки-транслокаторы.

Из тубулина, которые образуют веретено деления . Также у прокариот был выявлен, по крайней мере, один класс белков, которые могут считаться гомологами белков промежуточных филаментов и один класс белков цитоскелета (MinD /PraA), которые не имеют соответствующих у эукариот.

Гомологи актина

Пространственное строение эукариотического актина и его прокариотических гомологов MreB и ParM , все белки находятся в АДФ -связанной форме

    PDB 1jcg EBI.jpg

    Прокариотический белок цитоскелета MreB

MreB и его гомологи

Структура и динамика филаментов MreB и его гомологов

Как было показано в экспериментах на белках бактерии Thermotoga maritima мономерные единицы MreB способны к самоорганизации in vitro в длинные линейные филаменты, которые состоят из двух протофиламентов, расположенных параллельно. По строению филаменты MreB отличаются F-актина , образованного двумя цепями, спирально закрученными один вокруг другого. Для полимеризации MreB необходимо наличие в среде АТФ , однако она происходит одинаково успешно и в присутствии ГТФ (в отличие от актина, который полимеризуется лишь при наличии АТФ). Это связано с тем, что новые субъединицы включаются в состав полимера только в форме, связанной с нуклеотидтрифосфатом , позднее происходит гидролиз связанного АТФ или ГТФ до АДФ или ГДФ соответственно.

Функции MreB и его гомологов

Одной из основных функций филаментов MreB и гомологических белков является поддержание палочкоподобной или спиральной формы бактериальной клетки. Мутации, которые нарушают экспрессию этих белков, приводят к выраженному изменению формы бактерий (обычно они преобразуются в округлые клетки, или в случае Mbl - в клетки неправильной формы). Однако филаменты MreB не служат непосредственно каркасом для поддержания формы клетки, вместо этого, располагаясь по спирали вдоль неё, они являются сайтами для прикрепления ферментов , синтезирующих пептидогликан клеточной стенки . Таким образом они регулируют характер отложение новых элементов на оболочку бактерий, которая собственно и является определяющим фактором в поддержании постоянной формы. Подобным образом микротрубочки растительной клетки влияют на её форму, направляя включения молекул целлюлозы в клеточную стенку. У многих бактерий (в частности, и у E.coli и B.subtilis ) ген mreB является частью оперона , в состав которого входят также гены mreC и mreD . Этот оперон входит в большой кластер генов, необходимых для биосинтеза пептидогликана. Продукты генов mreC и mreD - это белки внутренней мембраны грамотрицательных бактерий , они взаимодействуют с белком MreB и принимают участие в организации его комплекса с ферментами, задействованными в биосинтезе муреина, такими как муреинтранспептидаза PBP2. Также в состав этого комплекса входят трансмембранные белки RodZ и RodA .

Филаменты MreB также принимают участие в определении некоторых аспектов полярности клетки, в частности концентрации на одном или обоих полюсах некоторых белков, например, тех, что отвечают за хемотаксис , подвижность, секрецию и вирулентность .

Ещё одной функцией MreB и его гомологов является участие в расхождении копий бактериальной хромосомы во время деления. Среди мутантов , у которых этот белок отсутствует, были обнаружены клетки с несколькими нуклеоидами в цитоплазме , а также и клетки, не имевшие хромосом. Местом прикрепления белков MreB к бактериальной ДНК является точка ori C, присоединение происходит или непосредственно, или при участии других белков. Во время деления филаменты цитоскелета обеспечивают расхождение точек oriC двух копий ДНК к противоположным концам клетки, механизм этого процесса пока (2006 год) не выяснен. Также неизвестно каким образом происходит расхождение хромосом у кокков , у которых отсутствует ген mreB и его гомологи.

Белок разделения плазмид ParM

Структура и динамика филаментов ParM

Как и все элементы цитоскелета, филаменты ParM состоят из мономерных белковых субъединиц. Эти субъединицы способны к полимеризации in vitro в присутствии АТФ или ГТФ . Образованные нитки состоят из двух протофиламентов, закрученных один вокруг другого (структура схожа с F-актином). В живых клетках мономеры ParM формируют длинные неразветвлённые филаменты, которые размещаются вдоль оси бактерии. В отличие от актина и MreB и его аналогов, ParM не образует пучков.

Полимеризация и диссоциация мономеров ParM зависит от присоединения и гидролиза АТФ. Новые субъединицы включаются в состав филамента в АТФ-связанной форме, причём присоединение может происходить на обоих концах филамента. Одновременно со включением новой ParM-АТФ субъединицы происходит гидролиз АТФ в последней присоединённой белковой молекуле. Таким образом, весь филамент состоит из белков ParM-АДФ, и только на концах находятся ParM-АТФ субъединицы, которые «кепуют» всю структуру, стабилизируя её.

При отсутствии соответствующей плазмиды полимеризация филаментов ParM продолжается до тех пор, пока они не достигают определённой критической длины. После этого они начинают очень быстро диссоциировать , причём скорость их этого процесса приблизительно в 100 раз превышает таковую для F-актина. Таким образом, по динамике распада эти элементы больше напоминают микротрубочки эукариот.

Принцип функционирования филаментов ParM

Белок организации магнетосом MamK

Ещё один прокариотический гомолог актина MamK принимает участие в организации мембран магнетосом . Магнетосомы - это органеллы бактерий родов Magnetospirillum и Magnetococcus , которые содержат кристаллы магнетита , окружённые мембраной, и помогают бактерии ориентироваться в геомагнитном поле . В клетке магнетосомы расположены в ряд, с ними всегда ассоциированы длинные филаменты белки MamK.

Гомологи тубулина

В большинстве прокариот также имеются гомологи эукариотического белка тубулина , из которого состоят микротрубочки . Лучше всего изученным из этих гомологов является белок FtsZ , который принимает участие в цитокинезе . Тубулин и FtsZ имеют достаточно мало идентичности в аминокислотной последовательности, консервативным является только ГТФазный домен , однако по пространственной структуре они схожи между собой. Также у отдельных представителей бактерий и архей были обнаружены и другие гомологи тубулина: например, белки BtubA/BtubB Prosthebacter dejoneii , а также TubZ и RepX , которые кодируются плазмидными генами бактерий рода Bacillus .

Пространственная структура эукариотического тубулина и его прокариотического гомолога FtsZ , белки находятся в ГДФ -связанной форме

Источники

  1. Shih YL, Rothfield L (2006). «The bacterial cytoskeleton». Microbiol Mol Biol Rev 70 : 729-54. DOI :10.1128/MMBR.00017-06 . PMID 16959967 .
  2. Bi EF, Lutkenhaus J (1991). «FtsZ ring structure associated with division in Escherichia coli». Nature 354 : 161-4. DOI :10.1038/354161a0 . PMID 1944597 .
  3. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. . - 5th. - Garland Science, 2007. - ISBN 978-0-8153-4105-5 .
  4. Gitai Z (2005). «The new bacterial cell biology: moving parts and subcellular architecture». Cell 120 : 577-86. DOI :10.1016/j.cell.2005.02.026 . PMID 15766522 .
  5. Gerdes K (2009). «RodZ, a new player in bacterial cell morphogenesis». The EMBO Journal 28 : 171 - 172. DOI :10.1038/emboj.2008.287 . PMID 19194484 .
  6. Salje J, Gayathri P, Löwe J (2005). «The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments». Cell 120 : 577-86. DOI :10.1016/j.cell.2005.02.026 . PMID 15766522 .
  7. Taoka A, Asada R, Wu LF, Fukumori Y (2007). «Polymerization of the actin-like protein MamK, which is associated with magnetosomes». J Bacteriol 189 : 8737-40. DOI :10.1128/JB.00899-07 . PMID 17905974 .
  8. Pogliano J. (2008). «The bacterial cytoskeleton». Curr Opin Cell Biol 20 : 19-27. DOI :10.1016/j.ceb.2007.12.006 . PMID 18243677 .

Напишите отзыв о статье "Цитоскелет прокариот"

Отрывок, характеризующий Цитоскелет прокариот

– Это болезнь, иначе нельзя объяснить, – сказал штаб ротмистр.
– Уж там болезнь не болезнь, а не попадайся он мне на глаза – убью! – кровожадно прокричал Денисов.
В комнату вошел Жерков.
– Ты как? – обратились вдруг офицеры к вошедшему.
– Поход, господа. Мак в плен сдался и с армией, совсем.
– Врешь!
– Сам видел.
– Как? Мака живого видел? с руками, с ногами?
– Поход! Поход! Дать ему бутылку за такую новость. Ты как же сюда попал?
– Опять в полк выслали, за чорта, за Мака. Австрийской генерал пожаловался. Я его поздравил с приездом Мака…Ты что, Ростов, точно из бани?
– Тут, брат, у нас, такая каша второй день.
Вошел полковой адъютант и подтвердил известие, привезенное Жерковым. На завтра велено было выступать.
– Поход, господа!
– Ну, и слава Богу, засиделись.

Кутузов отступил к Вене, уничтожая за собой мосты на реках Инне (в Браунау) и Трауне (в Линце). 23 го октября.русские войска переходили реку Энс. Русские обозы, артиллерия и колонны войск в середине дня тянулись через город Энс, по сю и по ту сторону моста.
День был теплый, осенний и дождливый. Пространная перспектива, раскрывавшаяся с возвышения, где стояли русские батареи, защищавшие мост, то вдруг затягивалась кисейным занавесом косого дождя, то вдруг расширялась, и при свете солнца далеко и ясно становились видны предметы, точно покрытые лаком. Виднелся городок под ногами с своими белыми домами и красными крышами, собором и мостом, по обеим сторонам которого, толпясь, лилися массы русских войск. Виднелись на повороте Дуная суда, и остров, и замок с парком, окруженный водами впадения Энса в Дунай, виднелся левый скалистый и покрытый сосновым лесом берег Дуная с таинственною далью зеленых вершин и голубеющими ущельями. Виднелись башни монастыря, выдававшегося из за соснового, казавшегося нетронутым, дикого леса; далеко впереди на горе, по ту сторону Энса, виднелись разъезды неприятеля.
Между орудиями, на высоте, стояли спереди начальник ариергарда генерал с свитским офицером, рассматривая в трубу местность. Несколько позади сидел на хоботе орудия Несвицкий, посланный от главнокомандующего к ариергарду.
Казак, сопутствовавший Несвицкому, подал сумочку и фляжку, и Несвицкий угощал офицеров пирожками и настоящим доппелькюмелем. Офицеры радостно окружали его, кто на коленах, кто сидя по турецки на мокрой траве.
– Да, не дурак был этот австрийский князь, что тут замок выстроил. Славное место. Что же вы не едите, господа? – говорил Несвицкий.
– Покорно благодарю, князь, – отвечал один из офицеров, с удовольствием разговаривая с таким важным штабным чиновником. – Прекрасное место. Мы мимо самого парка проходили, двух оленей видели, и дом какой чудесный!
– Посмотрите, князь, – сказал другой, которому очень хотелось взять еще пирожок, но совестно было, и который поэтому притворялся, что он оглядывает местность, – посмотрите ка, уж забрались туда наши пехотные. Вон там, на лужку, за деревней, трое тащут что то. .Они проберут этот дворец, – сказал он с видимым одобрением.
– И то, и то, – сказал Несвицкий. – Нет, а чего бы я желал, – прибавил он, прожевывая пирожок в своем красивом влажном рте, – так это вон туда забраться.
Он указывал на монастырь с башнями, видневшийся на горе. Он улыбнулся, глаза его сузились и засветились.
– А ведь хорошо бы, господа!
Офицеры засмеялись.
– Хоть бы попугать этих монашенок. Итальянки, говорят, есть молоденькие. Право, пять лет жизни отдал бы!
– Им ведь и скучно, – смеясь, сказал офицер, который был посмелее.
Между тем свитский офицер, стоявший впереди, указывал что то генералу; генерал смотрел в зрительную трубку.
– Ну, так и есть, так и есть, – сердито сказал генерал, опуская трубку от глаз и пожимая плечами, – так и есть, станут бить по переправе. И что они там мешкают?
На той стороне простым глазом виден был неприятель и его батарея, из которой показался молочно белый дымок. Вслед за дымком раздался дальний выстрел, и видно было, как наши войска заспешили на переправе.
Несвицкий, отдуваясь, поднялся и, улыбаясь, подошел к генералу.
– Не угодно ли закусить вашему превосходительству? – сказал он.
– Нехорошо дело, – сказал генерал, не отвечая ему, – замешкались наши.
– Не съездить ли, ваше превосходительство? – сказал Несвицкий.
– Да, съездите, пожалуйста, – сказал генерал, повторяя то, что уже раз подробно было приказано, – и скажите гусарам, чтобы они последние перешли и зажгли мост, как я приказывал, да чтобы горючие материалы на мосту еще осмотреть.
– Очень хорошо, – отвечал Несвицкий.
Он кликнул казака с лошадью, велел убрать сумочку и фляжку и легко перекинул свое тяжелое тело на седло.
– Право, заеду к монашенкам, – сказал он офицерам, с улыбкою глядевшим на него, и поехал по вьющейся тропинке под гору.
– Нут ка, куда донесет, капитан, хватите ка! – сказал генерал, обращаясь к артиллеристу. – Позабавьтесь от скуки.
– Прислуга к орудиям! – скомандовал офицер.
И через минуту весело выбежали от костров артиллеристы и зарядили.
– Первое! – послышалась команда.
Бойко отскочил 1 й номер. Металлически, оглушая, зазвенело орудие, и через головы всех наших под горой, свистя, пролетела граната и, далеко не долетев до неприятеля, дымком показала место своего падения и лопнула.
Лица солдат и офицеров повеселели при этом звуке; все поднялись и занялись наблюдениями над видными, как на ладони, движениями внизу наших войск и впереди – движениями приближавшегося неприятеля. Солнце в ту же минуту совсем вышло из за туч, и этот красивый звук одинокого выстрела и блеск яркого солнца слились в одно бодрое и веселое впечатление.

Над мостом уже пролетели два неприятельские ядра, и на мосту была давка. В средине моста, слезши с лошади, прижатый своим толстым телом к перилам, стоял князь Несвицкий.
Он, смеючись, оглядывался назад на своего казака, который с двумя лошадьми в поводу стоял несколько шагов позади его.
Только что князь Несвицкий хотел двинуться вперед, как опять солдаты и повозки напирали на него и опять прижимали его к перилам, и ему ничего не оставалось, как улыбаться.
– Экой ты, братец, мой! – говорил казак фурштатскому солдату с повозкой, напиравшему на толпившуюся v самых колес и лошадей пехоту, – экой ты! Нет, чтобы подождать: видишь, генералу проехать.
Но фурштат, не обращая внимания на наименование генерала, кричал на солдат, запружавших ему дорогу: – Эй! землячки! держись влево, постой! – Но землячки, теснясь плечо с плечом, цепляясь штыками и не прерываясь, двигались по мосту одною сплошною массой. Поглядев за перила вниз, князь Несвицкий видел быстрые, шумные, невысокие волны Энса, которые, сливаясь, рябея и загибаясь около свай моста, перегоняли одна другую. Поглядев на мост, он видел столь же однообразные живые волны солдат, кутасы, кивера с чехлами, ранцы, штыки, длинные ружья и из под киверов лица с широкими скулами, ввалившимися щеками и беззаботно усталыми выражениями и движущиеся ноги по натасканной на доски моста липкой грязи. Иногда между однообразными волнами солдат, как взбрызг белой пены в волнах Энса, протискивался между солдатами офицер в плаще, с своею отличною от солдат физиономией; иногда, как щепка, вьющаяся по реке, уносился по мосту волнами пехоты пеший гусар, денщик или житель; иногда, как бревно, плывущее по реке, окруженная со всех сторон, проплывала по мосту ротная или офицерская, наложенная доверху и прикрытая кожами, повозка.
– Вишь, их, как плотину, прорвало, – безнадежно останавливаясь, говорил казак. – Много ль вас еще там?
– Мелион без одного! – подмигивая говорил близко проходивший в прорванной шинели веселый солдат и скрывался; за ним проходил другой, старый солдат.
– Как он (он – неприятель) таперича по мосту примется зажаривать, – говорил мрачно старый солдат, обращаясь к товарищу, – забудешь чесаться.
И солдат проходил. За ним другой солдат ехал на повозке.
– Куда, чорт, подвертки запихал? – говорил денщик, бегом следуя за повозкой и шаря в задке.
И этот проходил с повозкой. За этим шли веселые и, видимо, выпившие солдаты.
– Как он его, милый человек, полыхнет прикладом то в самые зубы… – радостно говорил один солдат в высоко подоткнутой шинели, широко размахивая рукой.
– То то оно, сладкая ветчина то. – отвечал другой с хохотом.
И они прошли, так что Несвицкий не узнал, кого ударили в зубы и к чему относилась ветчина.
– Эк торопятся, что он холодную пустил, так и думаешь, всех перебьют. – говорил унтер офицер сердито и укоризненно.
– Как оно пролетит мимо меня, дяденька, ядро то, – говорил, едва удерживаясь от смеха, с огромным ртом молодой солдат, – я так и обмер. Право, ей Богу, так испужался, беда! – говорил этот солдат, как будто хвастаясь тем, что он испугался. И этот проходил. За ним следовала повозка, непохожая на все проезжавшие до сих пор. Это был немецкий форшпан на паре, нагруженный, казалось, целым домом; за форшпаном, который вез немец, привязана была красивая, пестрая, с огромным вымем, корова. На перинах сидела женщина с грудным ребенком, старуха и молодая, багроворумяная, здоровая девушка немка. Видно, по особому разрешению были пропущены эти выселявшиеся жители. Глаза всех солдат обратились на женщин, и, пока проезжала повозка, двигаясь шаг за шагом, и, все замечания солдат относились только к двум женщинам. На всех лицах была почти одна и та же улыбка непристойных мыслей об этой женщине.
– Ишь, колбаса то, тоже убирается!
– Продай матушку, – ударяя на последнем слоге, говорил другой солдат, обращаясь к немцу, который, опустив глаза, сердито и испуганно шел широким шагом.
– Эк убралась как! То то черти!
– Вот бы тебе к ним стоять, Федотов.
– Видали, брат!
– Куда вы? – спрашивал пехотный офицер, евший яблоко, тоже полуулыбаясь и глядя на красивую девушку.
Немец, закрыв глаза, показывал, что не понимает.
– Хочешь, возьми себе, – говорил офицер, подавая девушке яблоко. Девушка улыбнулась и взяла. Несвицкий, как и все, бывшие на мосту, не спускал глаз с женщин, пока они не проехали. Когда они проехали, опять шли такие же солдаты, с такими же разговорами, и, наконец, все остановились. Как это часто бывает, на выезде моста замялись лошади в ротной повозке, и вся толпа должна была ждать.
– И что становятся? Порядку то нет! – говорили солдаты. – Куда прешь? Чорт! Нет того, чтобы подождать. Хуже того будет, как он мост подожжет. Вишь, и офицера то приперли, – говорили с разных сторон остановившиеся толпы, оглядывая друг друга, и всё жались вперед к выходу.
Оглянувшись под мост на воды Энса, Несвицкий вдруг услышал еще новый для него звук, быстро приближающегося… чего то большого и чего то шлепнувшегося в воду.
– Ишь ты, куда фатает! – строго сказал близко стоявший солдат, оглядываясь на звук.
– Подбадривает, чтобы скорей проходили, – сказал другой неспокойно.
Толпа опять тронулась. Несвицкий понял, что это было ядро.
– Эй, казак, подавай лошадь! – сказал он. – Ну, вы! сторонись! посторонись! дорогу!
Он с большим усилием добрался до лошади. Не переставая кричать, он тронулся вперед. Солдаты пожались, чтобы дать ему дорогу, но снова опять нажали на него так, что отдавили ему ногу, и ближайшие не были виноваты, потому что их давили еще сильнее.
– Несвицкий! Несвицкий! Ты, г"ожа! – послышался в это время сзади хриплый голос.
Несвицкий оглянулся и увидал в пятнадцати шагах отделенного от него живою массой двигающейся пехоты красного, черного, лохматого, в фуражке на затылке и в молодецки накинутом на плече ментике Ваську Денисова.
– Вели ты им, чег"тям, дьяволам, дать дог"огу, – кричал. Денисов, видимо находясь в припадке горячности, блестя и поводя своими черными, как уголь, глазами в воспаленных белках и махая невынутою из ножен саблей, которую он держал такою же красною, как и лицо, голою маленькою рукой.
– Э! Вася! – отвечал радостно Несвицкий. – Да ты что?
– Эскадг"ону пг"ойти нельзя, – кричал Васька Денисов, злобно открывая белые зубы, шпоря своего красивого вороного, кровного Бедуина, который, мигая ушами от штыков, на которые он натыкался, фыркая, брызгая вокруг себя пеной с мундштука, звеня, бил копытами по доскам моста и, казалось, готов был перепрыгнуть через перила моста, ежели бы ему позволил седок. – Что это? как баг"аны! точь в точь баг"аны! Пг"очь… дай дог"огу!… Стой там! ты повозка, чог"т! Саблей изг"ублю! – кричал он, действительно вынимая наголо саблю и начиная махать ею.
Солдаты с испуганными лицами нажались друг на друга, и Денисов присоединился к Несвицкому.
– Что же ты не пьян нынче? – сказал Несвицкий Денисову, когда он подъехал к нему.
– И напиться то вг"емени не дадут! – отвечал Васька Денисов. – Целый день то туда, то сюда таскают полк. Дг"аться – так дг"аться. А то чог"т знает что такое!
– Каким ты щеголем нынче! – оглядывая его новый ментик и вальтрап, сказал Несвицкий.
Денисов улыбнулся, достал из ташки платок, распространявший запах духов, и сунул в нос Несвицкому.
– Нельзя, в дело иду! выбг"ился, зубы вычистил и надушился.
Осанистая фигура Несвицкого, сопровождаемая казаком, и решительность Денисова, махавшего саблей и отчаянно кричавшего, подействовали так, что они протискались на ту сторону моста и остановили пехоту. Несвицкий нашел у выезда полковника, которому ему надо было передать приказание, и, исполнив свое поручение, поехал назад.
Расчистив дорогу, Денисов остановился у входа на мост. Небрежно сдерживая рвавшегося к своим и бившего ногой жеребца, он смотрел на двигавшийся ему навстречу эскадрон.
По доскам моста раздались прозрачные звуки копыт, как будто скакало несколько лошадей, и эскадрон, с офицерами впереди по четыре человека в ряд, растянулся по мосту и стал выходить на ту сторону.
Остановленные пехотные солдаты, толпясь в растоптанной у моста грязи, с тем особенным недоброжелательным чувством отчужденности и насмешки, с каким встречаются обыкновенно различные роды войск, смотрели на чистых, щеголеватых гусар, стройно проходивших мимо их.
– Нарядные ребята! Только бы на Подновинское!
– Что от них проку! Только напоказ и водят! – говорил другой.
– Пехота, не пыли! – шутил гусар, под которым лошадь, заиграв, брызнула грязью в пехотинца.
– Прогонял бы тебя с ранцем перехода два, шнурки то бы повытерлись, – обтирая рукавом грязь с лица, говорил пехотинец; – а то не человек, а птица сидит!
– То то бы тебя, Зикин, на коня посадить, ловок бы ты был, – шутил ефрейтор над худым, скрюченным от тяжести ранца солдатиком.
– Дубинку промеж ног возьми, вот тебе и конь буде, – отозвался гусар.

Остальная пехота поспешно проходила по мосту, спираясь воронкой у входа. Наконец повозки все прошли, давка стала меньше, и последний батальон вступил на мост. Одни гусары эскадрона Денисова оставались по ту сторону моста против неприятеля. Неприятель, вдалеке видный с противоположной горы, снизу, от моста, не был еще виден, так как из лощины, по которой текла река, горизонт оканчивался противоположным возвышением не дальше полуверсты. Впереди была пустыня, по которой кое где шевелились кучки наших разъездных казаков. Вдруг на противоположном возвышении дороги показались войска в синих капотах и артиллерия. Это были французы. Разъезд казаков рысью отошел под гору. Все офицеры и люди эскадрона Денисова, хотя и старались говорить о постороннем и смотреть по сторонам, не переставали думать только о том, что было там, на горе, и беспрестанно всё вглядывались в выходившие на горизонт пятна, которые они признавали за неприятельские войска. Погода после полудня опять прояснилась, солнце ярко спускалось над Дунаем и окружающими его темными горами. Было тихо, и с той горы изредка долетали звуки рожков и криков неприятеля. Между эскадроном и неприятелями уже никого не было, кроме мелких разъездов. Пустое пространство, саженей в триста, отделяло их от него. Неприятель перестал стрелять, и тем яснее чувствовалась та строгая, грозная, неприступная и неуловимая черта, которая разделяет два неприятельские войска.