Генераторы гармонических колебаний. LC-генераторы, RC-генераторы Структурная схема задающего генератора rc типа

RC-генераторы относятся к классу автоколебательных систем

релаксационного типа. Основными элементами такого генератора являются

усилитель и апериодические звенья, составленные из резисторов и

конденсаторов. Не имея в своем составе колебательного контура, такие

генераторы, тем не менее, позволяют получать колебания, близкие по форме к

гармоническим. Однако при сильной регенерации системы, когда используются

существенно нелинейные области характеристики усилителя, форма колебаний,

ввиду отсутствия колебательного контура, сильно искажается. Поэтому

генератор должен работать при незначительном превышении порога

самовозбуждения.

Основными достоинствами генераторов RC-типа являются простота и

малые габариты. Эти преимущества особенно ярко проявляются при

генерировании низких частот. Для генерирования частот порядка 100 Гц в

LC-генераторах (генераторах Томсона) потребовались бы весьма большие

значения индуктивностей и емкостей

В предыдущей главе рассматривались LС-автогенераторы. Они применяются на высоких частотах. Если же необходимо генерировать низкие частоты, применение LС-генераторов становится затруднительным. Почему? Всё очень просто. Поскольку формула для определения частоты генерирования колебаний выглядит вот так:

то нетрудно заметить, что для уменьшения частоты необходимо увеличивать емкость и индуктивность контура. А увеличение емкости и индуктивности напрямую влечёт увеличение габаритных размеров. Другими словами, размеры контура при этом будут гигантскими. А со стабилизацией частоты дело будет обстоять ещё хуже.

Поэтому придумали RC-автогенераторы, которые здесь мы и рассмотрим.

Наиболее простым RC-генератором является так называемая схема с трехфазной фазирующей цепочкой, которая ещё называется схемой с реактивными элементами одного знака. Она показана на рис. 1.

Рис. 1 - RC-автогенератор с фазовращающей цепочкой

Из схемы видно, что это всего-навсего усилитель, между выходом и входом которого включена цепь, которая переворачивает фазу сигнала на 180º. Эта цепь называется фазовращающей. Фазовращающая цепочка состоит из элементов С1R1, C2R2, C3R3. С помощью одной цепочки из резика и кондера можно получить сдвиг фаз не более чем на 90º. Реально же сдвиг получается близким к 60º. Поэтому для получения сдвига фазы на 180º приходится ставить три цепочки. С выхода последней RC-цепи сигнал подается на базу транзистора.

Работа начинается в момент включения источника питания. Возникающий при этом импульс коллекторного тока содержит широкий и непрерывный спектр частот, в котором обязательно будет и необходимая частота генерации. При этом колебания частоты, на которую настроена фазовращающая цепь, станут незатухающими. Для колебаний остальных частот условия самовозбуждения выполняться не будут и они, соответственно, быстро затухают. Частота колебаний определяется по формуле:

При этом должно соблюдаться условие:

R1=R2=R3=R
C1=C2=C3=C

Такие генераторы способны работать только на фиксированной частоте.

Помимо рассмотренного генератора с использованием фазовращающей цепи имеется ещё интересный, кстати, наиболее употребительный, вариант. Посмотрим на рис. 2.

Рис. 2 - Пассивный полосовой RC-фильтр с частотно-независимым делителем

Так вот, эта самая конструкция представляет собой так называемый мост Вина-Робинсона, хотя наиболее часто встречается название просто мост Вина. Ещё некоторые грамотеи пишут мост Вина с двумя "н".

Левая часть энтой конструкции представляет собой пассивный полосовой RC-фильтр, в точке А снимается выходное напряжение. Правая часть есть ни что иное, как частотно-независимый делитель. Принято считать, что R1=R2=R, C1=C2=C. Тогда резонансная частота будет определяться следующим выражением:

При этом модуль коэффициента усиления максимален и равен 1/3, а фазовый сдвиг нулевой. Если коэффициент передачи делителя равен коэффициенту передачи полосового фильтра, то на резонансной частоте напряжение между точками А и В будет равно нулю, а ФЧХ на резонансной частоте делает скачок от -90º до +90º. Вообще же должно выполнятся условие:

Конечно, все как обычно рассматривается в идеальном или приближенном к идеальному случаях. Ну а реально дело, как всегда, обстоит немного хуже. Поскольку каждый реальный элемент моста Вина имеет некоторый разброс параметров, даже незначительное несоблюдение условия R3=2R4 приведет либо к нарастанию амплитуды колебаний вплоть до насыщения усилителя, либо к затуханию колебаний или полной их невозможности.

Для того, чтобы было совсем понятно, втулим в мост Вина усилительный каскад. Для простоты воткнем операционный усилитель (ОУ).

Рис. 3 - Простейший генератор с мостом Вина

Вообще же именно так использовать эту схему не получится, поскольку в любом случае будет разброс параметров моста. Поэтому вместо резика R4 вводят какое-либо нелинейное или управляемое сопротивление. К примеру, нелинейный резик, управляемое сопротивление с помощью транзисторов, как полевых, так и биполярных, и прочая хрень. Очень часто резик R4 в мосте заменяют микромощной лампой накаливания, динамическое сопротивление которой с ростом амплитуды тока увеличивается. Нить накаливания обладает достаточно большой тепловой инерцией, и на частотах несколько сотен герц уже практически не влияет на работу схемы в пределах одного периода.

Генераторы с мостом Вина обладают одним хорошим свойством: если резики R1 и R2 заменить переменным, но только сдвоенным, то можно будет регулировать в некоторых пределах частоту генерации. Можно и кондеры С1 и С2 разбить на секции, тогда можно будет переключать диапазоны, а сдвоенным переменным резиком плавно регулировать частоту в диапазонах. Для тех, кто в танке, почти практическая схема генератора с мостом Вина показана на рисунке 4.

Рис. 4 - RC-генератор с мостом Вина

Итак, мост Вина образуют кондеры С1-С8, сдвоенный резик R1 и резики R2R3. Переключателем SA1 осуществляется выбор диапазона, резиком R1 - плавная регулировка в выбранном диапазоне. ОУ DA2 представляет собой повторитель напряжения для согласования с нагрузкой.

Синусоидальные генераторы

Общеизвестны две конфигурации. Первая называется генератор с мостом Вина . В этой схеме используются две RC цепи, одна с последовательными RC компонентами и одна с параллельными RC компонентами. Мост Вина часто используется в генераторах звуковых сигналов, так как он может легко настраиваться двух-секционным переменным конденсатором или двух секционным переменным потенциометром (который для генерации на низких частотах более доступен, чем соответствующий переменный конденсатор).

Вторая общеизвестная конструкция называется генератор с двойным Т-мостом, так как в ней используются две "Т" образные RC цепи включенные параллельно. Одна цепь является Т-образной R-C-R цепью, которая действует как фильтр пропускающий низкие частоты. Вторая цепь является Т-образной C-R-C цепью, которая действует как фильтр пропускающий высокие частоты. Вместе, эти цепи образуют мост, который настраивается на генерацию требуемой частоты.

Другой общеизвестной разработкой является фазосдвигающий генератор .

Если RC генераторы используются для производства неискажённой синусоиды, то они обычно требуют устройство некоторого вида для управления амплитудой. Многие разработки просто используют лампочку накаливания или термистор в цепи обратной связи. Эти генераторы используют тот факт, что сопротивление вольфрамовой нити накаливания увеличивается пропорционально её температуре, термистор работает похожим образом. Хорошо действующее ниже точки при которой нить накала действительно светится, увеличение амплитуды сигнала обратной связи увеличивает ток протекающий в нити накаливания тем самым увеличивая сопротивление нити накаливания. Увеличенное сопротивление нити накаливания уменьшает сигнал обратной связи, ограничивая сигнал генератора к линейной области.

Более сложные генераторы измеряют выходной уровень и используют это как обратную связь для управления усилением управляемого напряжением усилителя внутри генератора.

Импульсные генераторы

Существует много устройств которые не требуют от RC генераторов производить синусоиду. Наиболее часто применяются генераторы импульсов прямоугольной формы. Мультивибратор является одним из них. Другое схемотехническое решение генератора используется в специализированной интегральной микросхеме 555 timer IC , выпускаемой фирмой Philips. В Советском Союзе идея такого построения генератора импульсного напряжения была реализована в 80-х годах прошлого века в изобретениях по авторским свидетельствам №1072261 и №1392617 . Отличительной особенностью этих генераторов является то, что, в отличие от "555 timer IC", они могут собираться на стандартных микросхемах. Многие несинусоидальные RC генераторы требуют только одну RC цепь.

См. также

  • Генератор электронный

Примечания

Ссылки

  • http://www.radioland.net.ua/contentid-163.html
  • http://www.ref.by/refs/69/27685/1.html Мостовой RC-генератор синусоидальных колебаний с мостом Вина
  • http://www.naf-st.ru/articles/generator/rcgen/ Рис.3-Простейший генератор с мостом Вина

Wikimedia Foundation . 2010 .

  • RBK Money
  • RCA 1802

Смотреть что такое "RC-генератор" в других словарях:

    Генератор сигналов - Генератор сигналов это устройство, позволяющее получать сигнал определённой природы (электрический, акустический или другой), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.).… … Википедия

    Генератор огнетушащего аэрозоля - устройство для получения огнетушащего аэрозоля с заданными параметрами и подачи его в защищаемое помещение. Источник: НПБ 88 2001*: Установки пожаротушения и сигнализации. Нормы и правила проектирования Смотри также родственные термины: 3.4… … Словарь-справочник терминов нормативно-технической документации

    Генератор - Ван де Граафа электростатический ускоритель, в котором для создания высокого постоянного электрического напряжения применяется механический перенос электрических зарядов с помощью бесконечной ленты из диэлектрического материала. изотопный… … Термины атомной энергетики

    Генератор с мостом Вина - (выделен зеленым) на операционном усилителе. R1=R2, C1=C2 Генератор с мостом Вина разновидность … Википедия

    Генератор Макларена - Марсальи генератор псевдослучайных чисел, который основан на комбинации двух конгруэнтных генераторов и вспомогательной матрице, с помощью которой происходит перемешивание двух последовательностей, полученных от двух генераторов. Генератор был… … Википедия

    Генератор Кокрофта - Уолтона - умножитель напряжения Кокрофта Уолсона использовался в первых ускорителях элементарных частиц, которые использовались при разработке атомной бомбы. Данный умножитель, построенный в 1937 году компанией Philips, в настоящее время расположен в… … Википедия

    генератор - источник, распределитель; хуй; агрегат, стимулятор, релаксатор, магнето, альтернатор, мазер, иразер Словарь русских синонимов. генератор сущ., кол во синонимов: 63 автогенератор (1) … Словарь синонимов

    Генератор псевдослучайных чисел - (ГПСЧ, англ. Pseudorandom number generator, PRNG) алгоритм, порождающий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению (обычно равномерному). Современная информатика… … Википедия

    Генератор Пирса - назван в честь его изобретателя Джорджа Пирса (1872 1956). Генератор Пирса является производным от генератора Колпитца. В схеме используется минимум компонентов: один цифровой инвертор, один резистор, два конденсатора и кристалл кварца, который… … Википедия

    ГЕНЕРАТОР - (лат. generator, от genus, generis род). 1) родоначальник. 2) котел в паровых машинах. 3) машина для получения электрического тока. 4) прибор, производящий искусственный лед. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н … Словарь иностранных слов русского языка

    генератор опорного сигнала - Ндп. генератор фазы опорный генератор фазорегулятор эталонный генератор фазы Устройство для получения сигнала, определяющего угловое положение ротора. [ГОСТ 19534 74] Недопустимые, нерекомендуемые генератор фазыопорный… … Справочник технического переводчика


Генераторы с колебательным контуром незаменимы как источники синусоидальных высокочастотных колебаний. Для генерирования колебаний с частотами меньше 15…20 кГц они неудобны, так как колебательный контур получается слишком громоздким.

Другим недостатком низкочастотных LC – генераторов является трудность их перестройки в диапазоне частот. Все это обусловило широкое применение на указанных выше частотах RC- генераторов, в которых вместо колебательного контура используются частотные электрические RC-фильтры. Генераторы этого типа могут генерировать достаточно стабильные синусоидальные колебания в относительно широком диапазоне частот от долей герца до сотен килогерц. Они имеют малые размеры и массу, причем эти преимущества RC- генераторов наиболее полно проявляются в области низких частот.

4.2 Структурная схема rc-генератора

Данная схема изображена на рис. № 7.

Рис.№ 7. Структурная схема RC-автогенератора.

Схема содержит усилитель 1, нагруженный резистором и получающий питание от источника постоянного напряжения 3. Для самовозбуждения усилителя, т.е. для получения незатухающих колебаний, необходимо подать на его вход часть выходного напряжения, превышающее входное (или равное ему) и совпадающее с ним по фазе. Иначе говоря, усилитель необходимо охватить положительной обратной связью, причем четырехполюсник обратной связи 2 должен иметь достаточный коэффициент передачи. Эта задача решается в том случае, когда четырехполюсник 2 содержит фазосдвигающую цепь, состоящую из резисторов и конденсаторов сдвиг фаз между входным и выходным напряжениями 180 0 .

4.3 Принцип работы фазосдвигающей цепи

Схема которой показана на рис. № 8а, иллюстрируется с помощью векторной диаграммы рис. № 8б.

Рис.8. Фазосдвигающие цепи: а- принципиальная схема; б- векторная диаграмма; в,г- трехзвенные цепи

Пусть ко входу этой цепи RC подведено напряжение U1. Оно вызывает в цепи ток I, создающий падения напряжения на конденсаторе

(где ω-частота напряжения U1) и на резисторе U R =IR, которое одновременно является выходным напряжением U2. При этом угол сдвига фаз между током I и напряжением Uс равен 90 0 , а между током I и напряжением U R – нулю. Вектор напряжения U1 равен геометрической сумме векторов U C и U R и составляет с вектором U2 угол φ. Чем меньше емкость конденсатора С, тем ближе угол φ к 90 0 .

4.4 Условия самовозбуждения rc – автогенератора

Наибольший угол φ, который можно получить при изменении значений элементов RC- цепи, близок к 90 0 . Практически элементы схемы R и C подбирают так. Чтобы угол φ=60 0 . Следовательно, для получения угла сдвига фаз φ=180 0 , необходимого для выполнения условия баланса фаз. Требуется последовательно включить три звена RC.

На рис. № 8 в,г показаны два варианта схем трехзвенных фазосдвигающих цепей. Сдвиг фаз между выходным и входным напряжением на угол 180 0 при R1=R2=R3=R и C1=C2=C3=C обеспечивается на частотах: f 01 ≈(в схеме на рис. № 8в) и f 02 ≈(в схеме на рис. № 8г), где R выражено в омах, C- в фарадах, а f 0 - в герцах. Значения f 01 и f 02 одновременно частоту автоколебаний.

Для обеспечения баланса амплитуд коэффициент усиления усилителя К ус не должен быть меньше коэффициента передачи цепи обратной связи К о.с. =. Расчеты показывают, что для приведенных схем К о.с =. Таким образом, автоколебания в RC- генераторах, содержащих трехзвенные фазосдвигающие цепи с одинаковыми звеньями, возможно лишь при выполнении условий

f авт = f 01 (или f авт = f 02); К ус ≥29.

Департамент внутренней и кадровой политики Белгородской области

областное государственное автономное

профессиональное образовательное учреждение

«Белгородский политехнический колледж»

МДК 01.02Технология монтажа и наладки электронного оборудования электронной части станков с ЧПУ

Тема : «Схемы RC генератора с «Г» образным фильтром и «Г» образным мостом, назначение элементов схемы. Принцип действия, устройство и назначение триггера работающего в ключевом и счётном режимах. »

Выполнил:

Студент группы №24АСУ

Шеховской Дмитрий

Проверила:

Ротару Т.А.

Белгород, 2018г.

ВВЕДЕНИЕ. 3

RC-генераторы.. 4

Тригеры.. 9

RS-триггер. 11

D-триггеры.. 13

JK-триггер. 14

Т-триггер. 15

Контрольные вопросы: 16

Список интернет-источников: 18


ВВЕДЕНИЕ

RC-генераторы применяются для получения гармонических колебаний низкой и инфранизкой частот (до долей герц). В таких генераторах возможно получить частоту до 10 МГц. Следует отметить, что на таких низких частотах LC-генераторы были бы громоздкими и добротность была бы ниже необходимых требований. В то же время, RC-генераторы в НЧ-диапазоне имеют меньшие габариты, массу и стоимость, чем LC-генераторы.

В качестве активных элементов используются:

– биполярные транзисторы,

– полевые транзисторы,

– ОУ в интегральном исполнении.

RC-генераторы в своем составе имеют усилительный элемент (усилитель) и звено обратной связи (ОС).


RC-генераторы

Различаются следующие виды звеньев ОС:

− Г-образные звенья ОС (рис.1),

− мост Вина (рис.2),

− двойной Т-образный мост (рис.3) .

На рисунках 1.1, 1.2, 1.3 символом «U 1 » обозначено входное напряжение, символом «U 2 » − выходное напряжение.

Рис.1.1. Г-образные звенья ОС

Рис.1.2. Мост Вина Рис.1.3. Двойной Т-образный мост

RC-генераторы с Г-образным RC-звеном ОС

Рис.1.4. Принципиальная схема RC-генератора с Г-образным RC-звеном ОС

Как известно, в однокаскадном усилителе без ОС U ВХ и U ВЫХ сдвинуты по фазе друг относительно друга на 180º. Если U ВЫХ этого усилителя подать на его вход, то получится 100% ООС.

Для соблюдения баланса фаз (для введения ПОС) U ВЫХ, прежде чем подать его на вход усилителя, необходимо сдвинуть по фазе на 180º. Такой сдвиг можно осуществить с помощью трех одинаковых RC-звеньев (рис.4), каждое из которых изменяет фазу на 60º.

По расчетам, баланс фаз происходит на частоте , а баланс амплитуд – при коэффициенте усиления К≥29.

Г-образные RC-цепи могут выполняться с количеством звеньев больше 3 (чаще 4) – это может повысить частоту генерации.

Кроме того, частоту генерации можно повысить сменой мест резисторов и конденсаторов. Для изменения частоты генерации необходимо одновременно изменить все сопротивления R либо все емкости С.

RC-генераторы с Г-образными цепями обычно работают на фиксированной частоте или в узком диапазоне частот.

Одно звено Г- образного RC- фильтра позволяет осуществить фазовый сдвиг выходного напряжения относительно входного в предельном случае до p/2, и при построении генераторов гармонических колебаний используют как правило три последовательно включенных Г-образных фильтра.

При этом обеспечивается возможность фазового сдвига сигнала в цепи обратной связи равного p (по p/3 в каждом звене фильтра). И для обеспечения баланса фаз используются усилители сигналов, у которых выходной сигнал является противофазным входному, т.е. – инвертирующие усилители. В этом случае сдвиг фаз на p обеспечивается в усилителе и на p в канале обратной связи, что позволяет получить общий сдвиг фаз сигнала равным 2p и обеспечить требуемый баланс фаз.

При этом для построения генератора можно использовать любые схемы усилителей сигналов, обеспечивающие для выполнения баланса амплитуд требуемый коэффициент усиления К.

Мост Вина (рис.1.5) включен между выходом ОУ и его неинвертирующим входом, чем достигается ПОС. В таком автогенераторе усилитель должен иметь К≈3, однако в усилителе К>>3. Это может привести к большим искажениям. Во избежание этого вводят ООС, которая существенно повышает стабильность работы автогенератора.

Рис.1.5. Принципиальная схема RC-генератора с мостом Вина на ОУ

Резисторы R 3 , R 4 , R 5 соединяют выход с неинвертирующим входом ОУ. Резисторы R 4 и R 5 определяют требуемый коэффициент усиления, а терморезистор R 3 стабилизирует амплитуду и снижает искажения выходного напряжения.

На принципиальной схеме RC-автогенератора с несимметричным двойным Т-образным мостом (рис.1.6) выходное напряжение обозначено «U»; цепочка эмиттерной термостабилизации − «RC»; делитель напряжения − «Rg 1 », «Rg 2 ».

Рис. 1.6. Принципиальная схема RC-автогенератора

с несимметричным двойным Т-образным мостом

В данной схеме автогенератора К≈11. В таком автогенераторе двойной Т-образный мост включается как цепь ООС. Сдвиг фаз между U ВХ и U ВЫХ устанавливается при выполнении условия

; ; .

Частота колебаний определяется выражением .


Тригеры

Триггер (от английского “тrigger”) – цифровое устройство, которое может иметь всего два (0 или 1) устойчивых состояния. При этом переход из одного состояния в другое осуществляется максимально быстро, временем переходным процессов на практике принято пренебрегать. Триггеры – это основной элемент для построения различных запоминающих устройств. Их можно использоваться для хранения информации, но объем их память чрезвычайно мал – триггер может хранить биты, отдельные коды или сигналы.

По тому, как информация записывается в триггер, они делятся на:

· асинхронные – информация записывается непрерывно и зависит от информационных сигналов, которые подаются на вход триггера

· синхронные – информация записывается только при наличии дополнительного сигнала – синхронизирующего, фактически – открывающего работу триггера

В цифровойсхемотехнике используют такие обозначения для входов триггера:
S – раздельный вход, устанавливающий триггер в единичное состояние (на Q (прямом выходе) единица)
R - раздельный вход, устанавливающий триггер в нулевое состояние (на Q (прямом выходе) ноль)
С – вход синхронизации
D – информационный вход (на этот вход подается информация для дальнейшего занесения её в триггер)
Т - счетный вход


Исходя из функционального назначения, триггеры классифицируют:

· RS-триггеры

· D-триггеры

· Т-тригеры

· JK-триггер

· RS-триггер


RS-триггер

Простейший тип триггеров, на основе которого в дальнейшем создаются другие типы. Он может быть построен как на логических элементах 2ИЛИ-НЕ (прямые входы) или 2И-НЕ (инверсные входы)

Рис. 2.1. RS-триггер, схема построения и обозначение. А – на элементах ИЛИ-НЕ. Б – на элементах И-НЕ

Самостоятельно, из-за очень низкой помехоустойчивости, в цифровой технике RS-триггеры практически не используются. Исключение – устранение влияния дребезжания контактов, возникающее при коммутации механических переключателей. В этом случае потребуется тумблер (кнопка), имеющий три вывода, при этом один из выводов подключается попеременно к двум остальным. Для получения RS-триггера используют D-триггер, у которого входы D и C замкнуты на «ноль».

Принцип работы приведен на временной диаграмме:

Рис.2.2. Схема устранения влияния дребезжания контактов

Первым отрицательный сигнал, поступивший на вход –R переводит триггер в «0»-состояние, а первый отрицательный сигнал на на входе –S перебрасывает триггер в состояние единицы. Все остальные сигналы, которые вызваны дребезгом контактов, уже не смогут никак повлиять на триггер. При данной схеме подключения переключателя его верхнее положение будет соответствовать единице на выходе триггера, нижнее – нулю.

RS-триггер – асинхронный, но возникают случаи, когда есть необходимость зафиксировать (сохранить) записанную информацию. Для этого используют синхронный (синхронизируемый) RS-триггер, который в этом случае состоит из двух частей: обычного RS-триггера и схемы управления.

Рис.2.3. Синхронизируемый RS-триггер

При такой схеме, пока на входе С=0, значение импульсов, поступающих на Х1 и Х2 не имеет значение, RS-триггер находится в режиме «хранение». При С=1 триггер активизируется и переходит в режим записи.


D-триггеры

Триггер задержки, который используют для создания регистров сдвига и регистров хранения, неотъемлемая часть любого микропроцессора.

Рис. 3.1. Схема D-тригера

Имеет два входа – информационный и синхронизации. При состоянии С=0 тригер устойчив и при этом сигнал на выходе не зависит от сигналов, поступающих на информационный вход. При С=1 на прямом выходе информация будет точно повторять ту информацию, которая подается на вход D. На временной диаграмме приведен принцип работы D-триггера

Рис.3.2. D-триггер. а) схематическое изображение б) временная диаграмма работы


JK-триггер

По принципу работы JK-триггер практически полностью соответствует RS-триггеру, но при этом удалось избежать неопределенности, вызванной при одновременном поступлении на вход двух «единиц».

Рис. 4.1. Графическое изображение JK-триггера

Рис.4.2. JK-триггер на входе с логикой 3И

В этом случае JK-триггер переходит в режим счетного триггера. На практике это приводит к тому, что при одновременном поступлении на вход «единичных» сигналов, триггер меняет свое состояние – на противоположное. Ниже приводится таблица истинности для JK-триггера:

JK триггеры – очень универсальные устройства, при этом их универсальность носит двойной характер. С одной стороны, эти триггеры успешно используются для цифровых устройствах, так сказать, в чистом виде: в цифровых счетчиках, регистрах, делителях частоты и т.д. С другой стороны – очень легко из JK-триггера, соединив определенные выводы, получить любой необходимый тип триггера. Ниже приводится пример получения D – триггера из исходного JK – триггера, задействовав дополнительный инвертор

Т-триггер

Другое название – счетные триггеры, на основе которых создают двоичные счетчики и делители частоты. Триггеры такого типа имеют только один вход. Принцип его работы – когда импульс поступает на вход тригерра, его состояние меняется на противоположное, при поступлении второго импульса – возвращается в исходное.

Рис. 5.1. Временная диаграмма делителя частоты на основе Т-триггера

Из неё становится понятно, почему Т-тригер называют делителем частоты. Переключение триггера происходит в момент, когда на вход поступает передний фронт синхроимпульса. В результате частота, с которой следуют импульсы на выходе триггера, оказывается в 2 раза меньше исходной – частоты синхроимпульсов, поступающих на вход. Если установка одного счетного триггера позволяет частоту импульсов разделить на два, то два последовательно подключенных триггера, соответственно, уменьшат эту частоту в 4 раза.
Ниже приведен пример получения Т-тригерра из JK-триггера:

Рис. 5.2. Т-тригер на основе JK-триггера


Контрольные вопросы:

Для чего применяют RC-генераторы?

RC-генераторы применяются для получения гармонических колебаний низкой и инфранизкой частот (до долей герц)

T ремя основными типами электронных генераторов сигналов синусоидальной формы являются LC генераторы, кварцевые генераторы и RC генераторы.
LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соедененных либо параллельно, либо последовательно, параметры которых определяют частоту колебаний. LC генераторы используют в основном, в диапазоне радиочастот. На низких(звуковых) частотах удобнее применять RC генераторы, в которых для задания частоты колебаний используются резистивно - емкостная цепь.

LC генераторы синусоидальных колебаний.

Основными типами LC генераторов являются генератор Хартли и генератор Колпитца.

Генератор Хартли.

В генераторе Хартли, или как еще называют эту схему - индуктивной трехточке положительная обратная связь, необходимая для возникновения колебаний берется с отвода катушки индуктивности(L1 - L2) колебательного контура.

Генератор Колпитца.



В генераторе Колпитца (емкостной трехточке) положительная обратная связь снимается с средней точки составной емкости(C1 - C2) колебательного контура. Генератор Колпитца более стабилен, чем генератор Хартли и более часто используется. Когда требуется высокая стабильность, используют кварцевые генераторы.

Кварц - это материал, способный преобразовывать механическую энергию в электрическую и наоборот. Если к кристаллу кварца приложить переменное напряжение, он начнет колебаться, в такт с его частотой. Каждый кристалл обладает собственной резонансной частотой, зависящей от его размеров и структуры. Чем ближе частота приложенного напряжения, к резонансной частоте, тем выше интенсивность колебаний. Для изготовления кварцевого резонатора на кристаллическую пластинку кварца наносят металлические электроды.

Схема кварцевого генератора Хартли с параллельной обратной связью.

Кварц включен последовательно в цепь обратной связи. Если частота колебательного контура отклоняется от частоты кварца, волновое сопротивлние(импенданс) кварца увеличивается, уменьшая величину обратной связи с колебательным контуром. Колебательный контур возвращается на частоту кварца.

Генератор Пирса.

Очень популярная схема, поскольку в ней не используются катушки индуктивности.

Верхний предел резонанса кварца составляет 25 МГц. Если необходим стабильный генератор на более высокой частоте используют схему Батлера. Колебательный контур настраивается на частоту кварца или на частоту одной из его нечетных гармоник (третьей или пятой).


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт