Из дб в разы формула. Децибелы. Какое определение имеет децибел

Децибел - это относительная единица измерений, она не похожа на остальные известные величины, поэтому ее не включили в систему общепринятых единиц измерения СИ. Однако во многих расчетах допускается использование децибелов наравне с абсолютными единицами измерений и даже применение их в качестве опорной величины.

Децибелы определяются принадлежностью к физическим величинам, поэтому их нельзя относить к математическим понятиям. Это легко представить, если провести параллель с процентами, с которыми децибелы имеют много общего. Они не имеют конкретных размеров, но при этом очень удобны при сопоставлении 2-х одноименных величин, даже если они различны по своей природе. Таким образом, не сложно представить, что измеряется в децибелах.

История возникновения

Как выяснилось в результате длительных исследований, восприимчивость не находится в прямой зависимости от абсолютного уровня распространения звука. Она является показателем мощности, примененным к заданной единице площади, которая находится в зоне воздействия звуковых волн, что и измеряют в децибелах сегодня. В результате установили любопытную пропорцию - чем больше места принадлежит полезной площади человеческого уха, тем к лучшему восприятию минимальных мощностей оно расположено.

Таким образом, исследователю Александру Грэхему Беллу удалось установить, что предел восприятия человеческого уха равен от 10 до 12 Вт на метр квадратный. Полученные данные охватывали слишком широкий диапазон, который представлялся всего несколькими значениями. Это создавало определенные неудобства и исследователю пришлось создать собственную шкалу измерений.

В первоначальном варианте безымянная шкала имела 14 значений - от 0 до 13, где человеческий шепот имел значение «3», а разговорная речь - «6». Впоследствии эта шкала нашла широкое применение, а ее единицы назвали белами. Для получения более точных данных в логарифмическом масштабе исходную единицу увеличили в 10 раз - так сформировались децибелы.

Общие сведения

Прежде всего, следует отметить, что децибел - это одна десятая Бела, который является десятичной формой логарифма, определяющего отношение меж 2-мя мощностями. Природа мощностей, подлежащих сравнению, избирается произвольно. Главное, чтобы соблюдалось правило, представляющее сравниваемые мощности в равных единицах, например, в Ваттах. Благодаря этой особенности, обозначения децибелов применяют в разных областях:

  • механической;
  • электрической;
  • акустической;
  • электромагнитной.

Так как практическое применение показало, что Бел оказался довольно крупной единицей, то для лучшей наглядности было предложено его значение умножить на десять. Таким образом, появилась общепринятая единица - децибел, в чем измеряется звук сегодня.

Несмотря на обширную зону применения, большинству людей известно, что децибелы применяются для определения степени громкости. Эта величина характеризует волны на метр квадратный. Таким образом, увеличение громкости на 10 децибел сопоставимо с возрастанием силы звука вдвое.

В законодательстве децибел был признан расчетной величиной зашумленности помещения. Он явился определяющей характеристикой для исчисления допустимой силы шума в жилых строениях. Эта величина дает возможность измерить допустимый уровень шума в децибелах в квартире и выявить факты нарушения в случае необходимости.

Область применения

Сегодня проектировщики телекоммуникаций используют децибел в качестве базовой единицы для проведения сравнительных характеристик устройств, отраженных в логарифмическом масштабе. Такие возможности предоставляет конструктивная особенность данной величины, которая является логарифмической единицей разных уровней, используемых при затуханиях или, наоборот, усилениях мощностей.

Децибел получил широкое распространение в разнообразных областях современной техники. Что измеряется в децибелах сегодня? Это различные величины, изменяющиеся в обширном диапазоне, которые могут применяться:

  • в системах, связанных с передачей информации;
  • радиотехнике;
  • оптике;
  • антенной технике;
  • акустике.

Таким образом, децибелы применяют при измерении характеристик динамического диапазона, к примеру, ими можно измерить громкость звучания определенного музыкального инструмента. А также открывается возможность исчислять затухающие волны в момент их прохождения через поглощающую среду. Децибелы позволяют определить коэффициент усиления или зафиксировать коэффициент шума, создаваемого усилителем.

Использовать эти безразмерные единицы возможно как для физических величин, относящихся ко второму порядку - энергия или мощность, так и для величин, имеющих отношение к первому порядку - сила тока или напряжение. Децибелы открывают возможности измерения отношений между всеми физическими величинами, а кроме этого, с их помощью сопоставляют абсолютные значения.

Громкость звука

Физическая составляющая громкости звукового воздействия определяется уровнем имеющегося звукового давления, воздействующего на единицу контактной площади, что измеряется в децибелах. Формируется уровень шума из хаотического слияния звуков. На низкие частоты или, наоборот, звуки высокой частоты человек реагирует как на более тихие звуки. А звуки средних частот будут восприняты как более громкие, несмотря на одинаковую интенсивность.

Учитывая неравномерное восприятие звуков различной частоты человеческим ухом, на электронной базе был создан частотный фильтр, способный передавать эквивалентную степень звука с единицей измерения, которая выражается в дБа - где «а» обозначает применение фильтра. Этот фильтр, по итогам нормирования измерений, способен моделировать взвешенное значение уровня звука.

Способность разных людей воспринимать звуки находится в пределах громкости от 10 до 15 дБ, а в отдельных случаях даже выше. Воспринимаемые пределы интенсивности звука составляют частоты от 20 до 20 тыс. Герц. Наиболее легкие для восприятия звуки располагаются в частотном диапазоне от 3-х до 4-х кГц. Такую частоту принято использовать в телефонах, а также при радиовещании на средних и длинных волнах.

С годами диапазон воспринимаемых звуков сужается, особенно это касается высокочастотного спектра, где восприимчивость может снижаться до 18 кГц. Это приводит к общему ухудшению слуха, которому подвержены многие пожилые люди.

Допустимые показатели уровня шума в жилых помещениях

С использованием децибелов появилась возможность определить более точную шкалу шумов для окружающих звуков. Она отражает превосходящие по точности характеристики по сравнению с исходной шкалой, созданной в свое время Александром Беллом. С использованием этой шкалы законодательными органами определен уровень шума, норма которого действует в пределах жилых помещений, предназначенных для отдыха граждан.

Таким образом, значение «0» дБ означает полнейшую тишину, от которой раздается звон в ушах. Следующее значение 5 дБ также определяет полную тишину при наличии небольшого звукового фона, заглушающего внутренние процессы организма. При 10 дБ становятся различимы нечеткие звуки - всевозможные шорохи или шуршание листвы.

Значение в 15 дБ находится в диапазоне четкой слышимости самых тихих звуков, таких как тиканье наручных часов. При силе звука в 20 дБ можно разобрать осторожный шепот людей на расстоянии 1 метра. Отметка 25 дБ позволяет слышать более отчетливо разговор шепотом и шорох от трения мягких тканей.

30 дБ определяет, сколько децибел разрешено в квартире ночью и сопоставляется с беззвучным разговором или тиканьем настенных часов. При 35 дБ можно отчетливо слышать приглушенную речь.

Уровень в 40 децибел определяет силу звука обычного разговора. Это достаточная громкость, позволяющая свободно общаться в пределах помещения, смотреть телевизор или прослушивать музыкальные треки. Данная отметка определяет, сколько децибел разрешено в квартире днем.

Уровень шума, допустимый в рабочих условиях

По сравнению с допустимым уровнем шума в децибелах в квартире, на производстве и в офисной деятельности в рабочее время допускаются другие нормы уровня звука. Здесь действуют ограничения иного прядка, четко отрегулированные для каждого рода занятий. Основное правило в данных условиях - не допускать уровня шума, который способен отрицательно повлиять на здоровье человека.

В офисах

Значение уровня шума в 45 дБ находится в пределах хорошей слышимости и сопоставимо с шумом работы дрели или электродвигателя. Шум в 50 дБ также характеризуется пределами отличной слышимости и совпадает по силе со звуком печатающей машинки.

Уровень шума в 55 децибел остается в пределах превосходной слышимости, его можно представить на примере одновременного звучного разговора сразу нескольких людей. Этот показатель принимают в качестве верхней отметки, допустимой для офисных помещений.

В животноводстве и канцелярской деятельности

Сила шума в 60 дБ считается повышенной, такой уровень зашумленности можно встретить в конторах, где одновременно работает много печатных машинок. Показатель в 65 дБ также считают повышенным и его можно зафиксировать при работе типографского оборудования.

Уровень шума, достигающий отметки 70 дБ, сохраняет значение повышенного и встречается на животноводческих фермах. Значение шума в 75 дБ - это предельное значение повышенного уровня шума, его можно отметить на птицефабриках.

В производстве и транспорте

С отметкой в 80 дБ наступает уровень громкого звука, длительное воздействие которого станет следствием частичной утраты слуха. Поэтому, при работе в таких условиях рекомендуется применять защитные наушники. Сила шума в 85 дБ также находится в пределах уровня громкого звука, такие показания можно сопоставить с работой оборудования ткацкой фабрики.

Показатель шума в 90 дБ сохраняется в пределах громкого звука, такую силу зашумленности можно зарегистрировать при движении железнодорожного состава. Величина шума в 95 дБ достигает крайних пределов громкого звука, такой силы шум можно зафиксировать в металлопрокатном цеху.

Предельный уровень шума

Уровень шума на отметке 100 дБ достигает пределов чрезмерно громкого звука, его можно сравнить с раскатами грома. Работа в таких условиях считается вредной для здоровья и выполняется в рамках определенного стажа, по истечении которого человек считается непригодным для вредных работ.

Значение шума в 105 дБ также находится в пределах чрезмерно громкого звука, шум такой силы создает бензорезка при порезке металла. Сила шума в 110 дБ остается в границах чрезмерно громкого звука, такой показатель фиксируется при взлете вертолета. Величина шума в 115 дБ считается предельной для границ чрезмерно громкого звука, такой шум издает пескоструйный аппарат.

Уровень шума 120 дБ считается невыносимым, его можно сравнить с работой отбойного молотка. Шумовая отметка в 125 дБ также характеризуется невыносимым уровнем шума, такой отметки достигает самолет на старте. Максимальный уровень шума в дБ считается предельным на отметке 130, после чего наступает болевой порог, вынести который способен далеко не каждый.

Критический уровень шума

Сила шума на отметке 135 дБ считается недопустимой, человек, оказавшийся в зоне действия звука такой силы, получает контузию. Уровень шума в 140 дБ также приводит к контузии, таким звуком сопровождается старт реактивного самолета. При величине шума в 145 дБ разрывается осколочная граната.

Достигает отметки 150-155 дБ разрыв кумулятивного снаряда на танковой броне, звук такой силы приводит к контузии и травмам. После отметки 160 дБ наступает звуковой барьер, звук, превышающий этот предел, приводит к разрыву ушных барабанных перепонок, распаду легких и множественным травмам, нанесенным ударной волной, что вызывает мгновенную смерть.

Воздействие на организм неслышимых звуков

Звук, частота которого ниже 16 Гц, называют инфракрасным, а если частота его превышает 20 тыс. Гц, то такой звук называют ультразвуком. Барабанные перепонки человеческого уха не способны воспринимать звуки такой частоты, поэтому они находятся за пределами человеческого слуха. Децибелы, в чем измеряется звук сегодня, также определяют значения не слышимых звуков.

Звуки низкой частоты, находящиеся в пределах от 5-ти до 10-ти Гц, плохо переносятся человеческим организмом. Такое воздействие способно активизировать сбои в работе внутренних органов и отражаться на мозговой активности. Кроме этого, интенсивность низких частот оказывает воздействие на костные ткани, провоцируя суставные боли у людей, страдающих различными заболеваниями или перенесших травмы.

Повседневными источниками ультразвука являются различные транспортные средства, также ими могут служить раскаты грома или работа электронной аппаратуры. Такие воздействия выражаются в нагреве тканей, а сила их влияния находится в зависимости от расстояния до действующего источника и от степени звука.

Для общедоступных мест работы, обладающих неслышимого диапазона, также существуют определенные ограничения. Максимальная сила инфракрасного звука должна удерживаться в пределах 110 дБа, а сила ультразвука ограничивается отметкой в 125 дБа. Строго запрещено даже кратковременное нахождение в зонах, где звуковое давление превышает 135 дБ любой частоты.

Влияние шума, исходящего от оргтехники, и способы защиты

Шум, который издает компьютер и прочая организационная техника, может быть выше значения в 70 дБ. В связи с этим специалисты не рекомендуют устанавливать большое количество данной аппаратуры в одном помещении, особенно, если оно не большое. Шумные агрегаты рекомендуется устанавливать за пределами помещения, в котором находятся люди.

Для снижения уровня зашумленности в отделочных работах применяют материалы, обладающие шумопоглощающими свойствами. Кроме этого, можно использовать шторы из плотной ткани или, в крайнем случае, бируши, закрывающие от воздействия барабанные перепонки.

Сегодня при строительстве современных зданий существует новая норма, определяющая степень звукоизоляции помещений. Стены и перекрытия корпусов многоквартирных домов проверяют на устойчивость к воздействию шума. Если уровень звукоизоляции находится ниже допустимого предела, здание не может быть сдано в эксплуатацию до устранения неполадок.

Кроме всего, сегодня устанавливают ограничения по силе звука для различных сигнальных и оповещающих устройств. Для противопожарных систем, к примеру, сила звука оповещающего сигнала должна находиться в рамках от 75 дБа до 125 дБа.

Ю.БАЛТИН (YL2DX),

Когда требуется сравнить какие-нибудь величины, это можно сделать по-разному. Можно, например, разделив эти величины одну на другую, сказать - Р 1 больше чем Р 2 в 3 раза, или Р 1 , меньше чем Р 2 в 28 раз. Если нам понадобится далее вести какие-то расчеты, мы будем пользоваться отвлеченными числами 3, или 28, или 1/28 (иногда для уточнения добавляя слово "раз").

В ряде случаев для расчетов или для большей наглядности сравнения оказывается удобнее логарифмировать отношение величин и оперировать далее с числом log а (Р 1 /Р 2 ). Известно, что применение логарифмов упрощает математические расчеты, в частности, позволяет вместо умножения и деления пользоваться сложением и вычитанием. При большом диапазоне изменений какой-либо величины логарифмический масштаб позволяет лучше разглядеть на одном и том же графике и малые, и большие ее относительные изменения.

Чтобы различать, имеем ли мы дело с числом "раз" или с его логарифмом, а также чтобы зафиксировать, каким основанием мы пользуемся при логарифмировании (числом 10, числом e=2,71828 или иным), следует присвоить этому логарифму какое-нибудь название. В системе СИ в качестве относительной логарифмической единицы отношения мощностей Р 1 , и Р 2 принят десятичный логарифм Ig(Р 1 /Р 2 ). Эта единица называется бел (Б).

На практике этой довольно крупной единицей оказалось не очень удобно оперировать, поэтому ее "разменивают" на единицы, в десять раз меньшие - децибелы. Соотношение двух уровней мощности Р 1 и Р 2 в децибелах (дБ, или dB) выражают по следующей формуле:

Множитель 10 в формуле (1) появился потому, что десять децибел как раз и есть один бел. Таким образом, не повезло изобретателю телефона А.Г.Беллу - мало того, что единицу его имени укоротили на одну букву "л", так еще и пользуются лишь десятыми долями.

Теперь разберемся с отношениями напряжений или токов. Вспомним из школьного курса, что мощность в линейной цепи равна:

Отсюда легко видеть, что:

а значит:

Из школьного же курса вспомним:

Из равенств (2) и (3) вытекает следующее:

Это и есть формула взаимосвязи между "белами по мощности" и "белами по напряжению" в одной и той же цепи, если в ней выполняется закон Ома. Ну, а если мы намерены пользоваться десятыми долями бела, то обе половины этого уравнения необходимо умножить на 10. Отсюда следует, что при сравнении величин напряжений (U 1 и U 2) или токов (I 1 и l 2), их соотношение в децибелах:

Полезно запомнить несколько характерных значений, приведенных в таблице.

Если напряжение на резисторе увеличить вдвое (на +6 дБ "по напряжению"), то и протекающий через него ток увеличится вдвое (на +6 дБ "по току"), а мощность, выделяемая этим резистором, станет вчетверо больше-опять-таки на +6 дБ ("по мощности"). Чтобы уменьшить мощность в 10 раз (-10 дБ), нужно снизить приложенное к резистору напряжение в 3,162 раза (-10 дБ), отчего ток по закону Ома тоже уменьшится в 3,162 раза (-10 дБ).

Поскольку мощность в линейной цепи пропорциональна квадрату напряжения или тока, численные значения соотношений их величин, выраженные в децибелах, остаются одними и теми же как при сравнении мощностей, так и при сравнении напряжений или токов:

В случае ослабления сигнала (когда отношение Р 1 /Р 2 меньше единицы), логарифм становится отрицательным, следовательно, отрицательным становится и коэффициент передачи данной цепи, выраженный в децибелах. Для вычисления общего коэффициента передачи нескольких последовательно соединенных цепей или устройств достаточно просуммировать значения в децибелах с учетом их знаков (+) или (-). Это

намного удобнее, чем перемножать исходные значения в разах.

При вычислении коэффициента передачи различных устройств (например, усилительного каскада) во многих случаях мы имеем дело с разными входным и выходным сопротивлениями; в нелинейных цепях напряжение и ток взаимно не пропорциональны, а мощность не связана с тем и другим квадратичной зависимостью. Коэффициенты передачи таких цепей по току:

и по напряжению:

различны и в разах, и в децибелах; коэффициент передачи по мощности:

а в децибелах:

поскольку

Равенство (6) к этим случаям не относится, но по отдельности изменения или соотношения величин тока или напряжения на одном и том же линейном сопротивлении (например, на сопротивлении нагрузки нелинейного усилителя) все равно выражаются в децибелах формулами (4) и (5), а изменения уровня мощности - формулой (1).

Зачем возиться с логарифмами? Во-первых, логарифмическая шкала наиболее естественна для наших органов чувств, в частности, для слуха. Закон логарифмической зависимости ощущений от силы воздействия сформулирован Вебером и Фехнером (обычно называется законом Вебера) - "одинаковые относительные изменения раздражающей силы вызывают одинаковые приращения слухового ощущения, т.е. слуховое ощущение пропорционально логарифму раздражающей силы".

Практически, 1 дБ - это наименьшая ступенька изменения интенсивности звука, едва обнаруживаемая на слух, изменение на 6 дБ воспринимается на слух как хорошо заметное (но небольшое - примерно вдвое громче), на 10 дБ - значительное, а на 20 дБ-как весьма большое. Каждый балл по шкале S системы RST - это 6 дБ (или 0,6 бела), так что мы, особо не задумываясь, занимаемся логарифмированием каждый раз, когда начинаем очередную связь в эфире, передавая рапорт корреспонденту.

Во-вторых, значения величин, с которыми нередко приходится сталкиваться, в обычном исчислении бывает трудно соразмерить-скажем, 1 микровольт отличается от 1 киловольта в 1 000 000 000 раз. А в децибелах разница выражается вполне удобной величиной 180 дБ. Мощности, которые выделятся на одном и том же сопротивлении при приложении к нему этих напряжений, будут отличаться астрономически - в 1 000 000 000 000 000 000 раз, а в децибелах - все на те же 180 дБ. С другой стороны, если, например, сравнивать 1,03 мА и 1,37 мА, то их отличие выразится вполне заметной величиной - 2,5 дБ.

Децибелы

(-1)

(-3)

(-6)

(-10)

(-20)

(-40)

(-60)

Отношение мощностей P 1 /P 2

1,26 (0,79)

(0,5)

(0,25)

(0,1)

(0,01)

10 4

(10 -4)

(10 -6)

Отношение напряжений или токов U 1 /U 2 или I 1 /I 2

1,12

(0,89)

1,41

(0,707)

(0,5)

3,16

(0,316)

(0,1)

(0,01)

1000

(10 -3)

Если запомнить характерные значения из таблицы, то можно очень легко пересчитывать в уме и любые другие величины отношений в децибелы и обратно. Например, 4 дБ-это (3 дБ +1 дБ). Значит, отношение мощностей (2x1,26)= 2,52 раза или отношение напряжениий (1,41 х 1,12) =1,6 раза. Или, к примеру, отношение двух значений тока равно 17 раз, то есть (10x1,7). 10 раз по току - это 20 дБ, а 1,7 раза - между 1,41 и 2, значит, где-то около 4,5 дБ. В сумме (20 дБ + 4,5 дБ) = 24,5 дБ. Ну, а для чисел, кратных десяти, мнемоника очевидна.

Децибелы сами по себе - это величины не физические, а абстрактные, математические, такие же относительные, как и разы. Их нельзя пощупать руками как килограмм, метр или киловольт (нет... руками его, пожалуй, не стоит щупать... Hi). Их можно только вычислить, сравнивая реальные физические величины, и оперировать ими при расчетах. Но если мы устанавливаем в качестве эталона 0 дБ какое-то определенное значение физической величины, например, 1 Вт или 1 мкВ, то можем и прямо измерять в децибелах относительно него уровни мощности или, соответственно, напряжения. Обозначают такие единицы измерения теми же буквами "дБ", но с добавлением индекса: дБВт (децибел-ватт), дБмкВ (децибел-микровольт) и т.п. Например, мощность 27 дБВт-это то же самое, что 500 Вт, а -13 дБВт - 50 мВт. Напряжение -3 дБмкВ - 0,707 мкВ, а 23 дБмкВ - 14,14 мкВ.

В акустике за 0 дБ однозначно принято пороговое звуковое давление 2-10 Па, и децибел без дополнительного индекса прямо используется в качестве единицы уровня звукового давления.

На коротких волнах, по системе оценки сигнала RST, напряжение, равное 50 мкВ, на 50-омном входе приемника (S=9), в сущности, принято за ноль децибел. Каждый балл ниже девяти - это -6 дБ (в 2 раза меньше) от этого напряжения, а если сигнал сильнее, то S-метр покажет, на сколько децибел. Чтобы напряжение на входе приемника изменилось на 1 балл, нужно на столько же изменить мощность передатчика - на 6 дБ, то есть в 4 раза. Если получен RS 59+20 dB, то можно (и нужно бы!) смело уменьшать мощность передатчика на 30 дБ (т.е. в 1000 раз!!!) - все равно будет слышно достаточно громко - больше чем на S=7 (с запасом +2 дБ) (конечно, если "+20" было сказано не ради красного словца.. .Hi).

Надеюсь, что теперь понятно, почему "выжимать" 250 Вт из 200-ваттного передатчика просто глупо - увеличение силы сигнала менее чем на 1 дБ вообще никто не заметит, а вот сплэттер или щелчки по всему диапазону вполне реально могут испортить настроение многим.

О чувствительности приемника и S-метра

Чувствительность приемников часто измеряют в децибел-милливаттах (дБм) или дБмВт: 1 мВт = 0 дБм.

В сущности, измерять чувствительность в единицах мощности имеет больше смысла, чем в единицах напряжения, так так нам приходится иметь дело с сигналами разной формы - синусоидальными, шумовыми, шумоподобными и др. К тому же, мы избавляемся от необходимости уточнять, каково входное сопротивление приемника, и имеем возможность сравнивать чувствительность приемников с различными входными сопротивлениями. Эффективное напряжение 50 мкВ на 50-омном входе соответствует мощности -73 дБм. Этой же мощности соответствует напряжение 61,2 мкВ на 75-омном входе. Все это соответствует оценке S=9 сигнала по системе RST на частотах ниже 30 МГц. На УКВ за S=9 принята мощность -93 дБм (5 мкВ на 50-омном входе приемника).

Система оценки сигнала на слух по коду RST была предложена W2BSR в середине 30-х годов и с тех пор стала всемирно признанной. Стандарт градуировки S-метров был установлен IARU в 60-х годах, но когда его принимали, похоже, что ориентировались на не очень чувствительные приемники, а может быть, и на "тугоухих" операторов... (Hi). Впрочем, в те годы еще широко использовалась амплитудная модуляция (AM), в CW-приемниках сравнительно редко встречались хорошие узкополосные фильтры, а собственные шумы радиодеталей были побольше чем сейчас, так что чувствительность среднего любительского приемника была на порядок хуже, чем у современного.

Пороговая чувствительность порядка -130 дБм - очень высокая, но не редкая для современного КВ-приемника при узкой полосе в режиме CW (0,035 мкВ на 50-омном входе). Эта величина ниже, чем S=1 (-121 дБм) по S-метру. При таких уровнях имеется несоответствие слуховой (по таблице значений "S") и инструментальной (по S-метру) оценки силы сигнала - в чистом эфире, без помех, на хорошем приемнике сигнал с уровнем -125 или -130 дБм может вполне восприниматься на слух как хорошо читаемый "слабый", или "очень слабый" т.е. S=3 или S=2, a S-метр не будет показывать ничего. Но, по сути системы RST, если S=0, то сигнала просто не слышно совсем, a S=1 - это, по определению, "едва ощутимый сигнал". В тех же условиях сигнал мощностью -85 дБм может выглядеть как очень громкий (при достаточном коэффициенте усиления УНЧ приемника), но S-метр покажет не 9, а только 7 баллов - это типично, например, на 10-метровом диапазоне (впрочем, он как раз на границе KB и УКВ, где шкалы S-метров разные).

В трансиверах разных фирм стандарт IARU не очень-то соблюдается. Кроме того, чувствительность одного и того же приемника на разных диапазонах различается и может ступенчато регулироваться оператором (включением или выключением преду-силителей ВЧ и аттенюаторов), а шкала S-метра остается одна на все случаи. Если включен аттенюатор, то следует величину его затухания прибавить к показаниям S-метра, а если включен дополнительный пре-дусилитель - то величину его усиления из показаний S-метра вычесть. Разумеется, это относится только к случаю использования для приема полноразмерных согласованных антенн. Когда действующая высота антенны мала, или антенна не согласована со входом приемника, показания S-метра сами по себе ничего не скажут о реальном уровне сигнала в эфире.

В сущности, единственной полной и действительно объективной характеристикой уровня сигнала, создаваемого каким-либо передатчиком в точке приема, является напряженность поля, которую можно вычислить, разделив ЭДС на клеммах приемной антенны U A на ее действующую высоту h д:

КВ и УКВ №4, 2001 г.

При измерениях чего-то (например, напряжения) мы обычно думаем в прямых единицах (в вольтах). Но иногда более предпочтительно использовать относительную шкалу. В этом случае, наиболее часто используемой единицей измерений является децибел (дБ) - мощный инструмент, приводящий в замешательство начинающих. При знании происхождения этого термина и одного простого правила, затруднения могут быть исключены, а значение величины, выраженной в децибелах, может быть понято.

Александр Грехэм Белл стал известен благодаря изобретению телефона. Менее известны его работы по определению порога слышимости. В 1890 году он основал Ассоциацию глухих и плохо слышащих, которая действует до сих пор. Он был первым ученым, который количественно определил чувство слуха и установил, что слуховая восприимчивость зависит не от реального уровня мощности звуковой волны, достигающей нашего уха, а от ее логарифма.

Белл обнаружил, что порог слышимости ребенка составляет около 10 -12 Вт/м 2 , а уровень, при котором возникают болевые ощущения - около 10 Вт/м 2 . Таким образом, диапазон громкости, нормально воспринимаемой человеком, составляет 13 порядков!

Исходя из полученных значений, Белл определил шкалу звуковой мощности от 0 до 13. Единицы громкости этой шкалы называются белами (последнее "л" от его фамилии было отброшено). Уровень звука тихого шепота составляет около 3 белов, а нормальной речи - около 6 белов.

Поскольку ощущение громкости базируется на логарифмической шкале уровня мощности, то преобразование между мощностью и громкостью по шкале Белла выглядит следующим образом: громкость (в белах) = lg(P1/P0), где P0 - порог слышимости звука.

Следовательно, уровень звука в 4 бела соответствует звуковой мощности, равной 10 4 P0.

Бел стал фактически стандартной единицей измерения логарифма отношения двух энергетических уровней: отношение, выраженное в белах, есть lg(P1/P0), т.е. увеличение на 3 бела соответствует увеличению в 1000 раз. Если новое значение убывает, то логарифм отношения становится отрицательным. Чтобы сделать обратное преобразование необходимо 10 возвести в степень, равную белам.

Важнейшая особенность белов состоит в том, что они относятся только к отношению двух мощностей или двух энергий. Если же есть необходимость описания отношения двух амплитудных сигналов, например, напряжений, то возможно лишь опираться на отношение мощностей, ассоциированных с этими напряжениями. Мощность пропорциональна квадрату напряжения или тока: V 2 и I 2 .

Отношение двух напряжений, выраженное в белах, связано с отношением их мощностей: lg(P1/P0) = 2lg(V1/V0). Следовательно, отношение напряжений равно V1/V0 = lg10 (белы*2) .

Стало достаточно общим выражать отношение в десятых долях бела или в децибелах (дБ). Отношение двух мощностей в дБ равняется 10lg(P1/P0), а напряжений - 10 2lg(V1/V0). Для получения отношения напряжений необходимо выполнить преобразование V1/V0 = 10 (дБ/20) .

Порой достаточно мудрено определить, что считать амплитудной величиной, а что энергетической. Напряжение, ток, импеданс, напряженности электрического или магнитного полей и размахи любых волновых процессов считаются амплитудными величинами. Когда происходит измерение в децибелах, то вычисляется логарифм отношения квадратов этих величин. Энергия, мощность и интенсивность являются энергетическими величинами, и в отношении логарифма они используются непосредственно.

Например, 5% напряжения одной цепи передается в другую цепь. Отношение напряжений в этом случае равно 0,05. Для измерения в децибелах необходимо взять логарифм отношения напряжений, умножить его на 2, чтобы получить отношение в белах, а затем умножить на 10 для получения отношения в дБ: 20lg(0,05) = -26 дБ связи между сигналами.

В таблице приведены некоторые, часто используемые значения в децибелах и отношения амплитуд и мощностей.

Отношение амплитуд

Отношение мощностей

Значение в дБ

Области применения

Первоначально децибел использовался для измерения отношений энергетических (мощность , энергия) или силовых (напряжение, сила тока) величин. В принципе, с помощью децибелов можно измерять что угодно, но в настоящее время рекомендуется употреблять децибелы только для измерения уровня мощности и некоторых других связанных с мощностью величин. Так децибелы сегодня используются в акустике для измерения громкости звука и в электронике для измерения мощности электрического сигнала . Иногда в децибелах также измеряют динамический диапазон (например, звучания музыкальных инструментов). Также децибел является единицей звукового давления.

Измерение мощности

Как уже было сказано выше, изначально белы использовались для оценки отношения мощностей , поэтому в каноническом, привычном смысле величина, выраженная в белах, означает логарифмическое отношение двух мощностей и вычисляется по формуле:

величина в белах =

где P 1 / P 0 - отношение уровней двух мощностей, обычно измеряемой к т. н. опорной , базовой (взятой за нулевой уровень). Если говорить более точно, то это - «белы по мощности» . Тогда отношение двух величин в «децибелах по мощности» вычисляется по формуле:

величина в децибелах (по мощности) =

Измерение немощностных величин

Формулы для вычисления в децибелах разностей уровней немощностных (неэнергетических) величин, таких как напряжение или сила тока , отличаются от приведённой выше! Но в конечном итоге отношение этих величин, выраженное в децибелах, также выражается через отношение связанных с ними мощностей.

Так для линейной цепи справедливо равенство или

Отсюда видим, что а значит

откуда получаем равенство: которое представляет собой связь между «белами по мощности» и «белами по напряжению» в одной и той же цепи.

Из всего этого видим, что при сравнении величин напряжений (U 1 и U 2) или токов (I 1 и I 2) их отношения в децибелах выражаются формулами:

децибелы по напряжению = децибелы по току =

Можно подсчитать, что при измерении мощности изменению на 1 дБ соответствует приращение мощности (P 2 /P 1) в ≈1,25893 раза. Для напряжения или силы тока изменению на 1 дБ будет соответствовать приращение в ≈1,122 раза.

Пример вычислений

Предположим, что мощность P 2 в 2 раза больше начальной мощности P 1 , тогда

10 log 10 (P 2 /P 1) = 10 log 10 2 ≈ 3 дБ,

то есть изменение мощности на 3 дБ означает её увеличение в 2 раза. Аналогично изменение мощности в 10 раз:

10 log 10 (P 2 /P 1) = 10 log 10 10 = 10 дБ,

а в 1000 раз

10 log 10 (P 2 /P 1) = 10 log 10 1000 = 30 дБ,

И, наоборот, чтобы получить разы из децибел (dB), нужно

Для мощности - для напряжения (тока) .

Например, зная опорный уровень (P 1) и значение в дБ можно найти значение мощности, например, при P 1 = 1 мВт и известном отношении 20 дБ (dB):

Аналогично для напряжения, при U 1 = 2 В и отношении в 6 дБ:

Вычисления вполне реально производить в уме, для этого достаточно помнить примерную несложную таблицу (для мощностей):

1 дБ 1.25 3 дБ 2 6 дБ 4 9 дБ 8 10 дБ 10 20 дБ 100 30 дБ 1000

Сложению (вычитанию) значений дБ соответствует умножение (деление) самих отношений. Отрицательные значения дБ соответствуют обратным отношениям. Например, уменьшение мощности в 40 раз это 4*10 раз или −6 дБ-10 дБ= −16 дБ. Увеличение мощности в 128 раз это 2^7 или 3 дБ*7=21 дБ. Увеличение напряжения в 4 раза эквивалентно увеличению мощности в 4*4=16 раз, это 2^4 или 3 дБ*4=12 дБ.

Практическое применение

Поскольку децибел - не абсолютная, а относительная величина и вычисляется для различных физических величин по-разному (см. выше), то во избежание путаницы при использовании децибелов на практике существуют дополнительные договорённости.

чаще всего нужно знать отношение двух уровней (напряжений), выраженное в децибелах, есть несколько значений, которые легко запомнить:

6 дБ - отношение 2:1

20 дБ - отношение 10:1

40 дБ - отношение 100:1

60 дБ - отношение 1000:1

80 дБ - отношение 10000:1

100 дБ - отношение 100000:1

120 дБ - отношение 1000000:1

Промежуточные значения можно легко вычислить по формуле - 20*Lg(U1/U2), где U1 - уровень(напряжение) сигнала,U2 - уровень(напряжение) шума, напомним, что измерения проводятся средне-квадратичным милливольтметром, либо анализатором спектра с фильтром МЭК(А), где МЭК - Международная электротехническая комиссия

Зачем вообще применять децибелы и оперировать логарифмами, если то же самое можно выразить привычными процентами или долями? Представим себе, что в совершенно тёмной комнате включили лампочку некоторой светосилы. При этом, комната разительно отличается по виду до и после включения. Изменение освещённости, выраженное в дБ, тоже огромно, теоретически бесконечно. Допустим, что теперь включили ещё одну такую же лампочку. Теперь эффект будет совсем не тот, может быть даже человек не сразу заметит изменения, если её включить плавно. И в децибелах это будет всего 3 дБ. Итак, на практике, в децибелах удобно выполнять измерения как сильно меняющихся величин, так и почти постоянных.

Условные обозначения

Для различных физических величин одному и тому же числовому значению , выраженному в децибелах , могут соответствовать разные уровни сигналов (вернее разности уровней). Поэтому во избежание путаницы такие «конкретизированные» единицы измерения обозначают теми же буквами «дБ», но с добавлением индекса - общепринятого обозначения измеряемой физической величины. Например «дБВ» (децибел относительно вольта) или «дБмкВ» (децибел относительно микровольта), «дБВт» (децибел относительно ватта) и т. п. В соответствии с международным стандартом МЭК 27-3 при необходимости указать исходную величину ее значение помещают в скобках за обозначением логарифмической величины, например для уровня звукового давления: L P (re 20 µPA) = 20 dB; L P (исх. 20 мкПа) = 20 дБ

Применение в теории автоматического регулирования

Децибел также используется в теории автоматического регулирования и управления (ТАУ) и является одним из важнейших параметров при сравнении амплитуд выходного и входного сигналов.

Опорный уровень

Несмотря на то, что децибел служит для определения отношения двух величин, иногда децибелы используют и для измерения абсолютных значений. Для этого достаточно условиться, какой уровень измеряемой физической величины будет принят за опорный уровень (условный 0). На практике распространены следующие опорные уровни и специальные обозначения для них:

Во избежание путаницы желательно указывать опорный уровень явно, например −20 дБ (относительно 0,775 B) .

При пересчёте уровней мощностей в уровни напряжений и обратно надо обязательно учитывать сопротивление, являющиеся стандартным для данной задачи:

  • дБВ для 50-омной СВЧ -цепи соответствует (дБм−13 дБ);
  • дБмкВ для 50-омной СВЧ-цепи соответствует (дБм+107 дБ)
  • дБВ для 75-омной ТВ -цепи соответствует (дБм−11 дБ);
  • дБмкВ для 75-омной ТВ-цепи соответствует (дБм+109 дБ)

Следует чётко помнить математические правила:

  • перемножать или делить относительные единицы нельзя;
  • суммирование или вычитание относительных единиц производится независимо от их исходной размерности и соответствует умножению или делению абсолютных.

Например, подав на один конец 50-омного кабеля с коэффициентом передачи −6 дБ, мощность 0 дБм, что эквивалентно 1 мВт, или 0,22 В, или 107 дБмкВ, на выходе получим мощность −6 дБм, что эквивалентно 0,25 мВт (в 4 раза меньше по мощности) или 0,11 В (в два раза меньше по напряжению) или 101 дБмкВ (на те же 6 дБ меньше).

Людям очень нравятся некоторые звуки, например музыка. Она поднимает настроение, а иногда даже вызывает чувство блаженства. Парад Санта-Клауса в Торонто (Канада), 2010.

Общие сведения

Уровень звука определяет его громкость и используется в акустике - науке, изучающей уровень и другие свойства звука. Когда говорят о громкости, часто имеют в виду уменно уровень звука. Некоторые звуки очень неприятны и могут вызвать ряд психологических и физиологических проблем, в то время как другие звуки, например музыка, звук прибоя и пение птиц - действуют успокаивающее, нравятся людям и улучшают их настроение.

Таблица значений в децибелах и отношений амплитуд и мощностей

дБ Отношение мощностей Отношение амплитуд
100 10 000 000 000 100 000
90 1 000 000 000 31 620
80 100 000 000 10 000
70 10 000 000 3 162
60 1 000 000 1 000
50 100 000 316 0,2
40 10 000 100
30 1 000 31 0,62
20 100 10
10 10 3 0,162
3 1 0,995 1 0,413
1 1 0,259 1 0,122
0 1 1
–1 0 0,794 0 0,891
–3 0 0,501 0 0,708
–10 0 0,1 0 0,3162
–20 0 0,01 0 0,1
–30 0 0,001 0 0,03162
–40 0 0,0001 0 0,01
–50 0 0,00001 0 0,003162
–60 0 0,000001 0 0,001
–70 0 0,0000001 0 0,0003162
–80 0 0,00000001 0 0,0001
–90 0 0,000000001 0 0,00003162
–100 0 0,0000000001 0 0,00001

Эта таблица показывает как логарифмическая шкала позволяет описать очень большие и очень маленькие числа, представляющие отношения мощностей, энергий или амплитуд.

Ухо человека обладает очень высокой чувствительностью и способно услышать звуки от шепота на расстоянии 10 метров до шума реактивных двигателей. Мощность звука петарды может быть в 100 000 000 000 000 раз больше, чем самый слабый звук, который способно услышать человеческое ухо (20 микропаскалей). Это очень большая разница! Поскольку человеческое ухо способно различать такой большой диапазон громкостей звуков, для измерения силы звука используется логарифмическая шкала. На шкале в децибелах самый слабый звук, называемый порогом слышимости, имеет уровень 0 децибел. Звук, который громче порога слышимости в 10 раз, имеет уровень 20 децибел. Если звук в 30 раз громче порога слышимости, его уровень будет равен 30 децибелам. Ниже приведены примеры громкости различных звуков:

  • Порог слышимости - 0 дБ
  • Шепот - 20 дБ
  • Спокойный разговор на расстоянии 1 м - 50 дБ
  • Мощный пылесос на расстоянии 1 м - 80 дБ
  • Звук, при длительном воздействии которого возможно ухудшение слуха - 85 дБ
  • Портативный мультимедийный проигрыватель при полной громкости - 100 дБ
  • Болевой порог - 130 дБ
  • Турбореактивный двигатель истребителя на расстоянии 30 м - 150 дБ
  • Светозвуковая ручная граната M84 на расстоянии 1,5 м - 170 дБ

Музыка

Музыка, согласно археологам, украшает нашу жизнь на протяжении не менее 50 000 лет. Она окружает нас везде - музыка присутствует во всех культурах, и, как считают ученые, объединяет нас с другими людьми - в обществе, в семье, в группе по интересам. Мамы поют малышам колыбельные; люди ходят на концерты; танцы, как народные, так и современные, проходят под музыку. Музыка привлекает нас своей закономерностью и ритмичностью, так как мы часто ищем порядок и четкость и в повседневной жизни.

Шумовое загрязнение

В отличие от музыки, некоторые звуки вызывают у нас очень неприятные ощущения. Шум, возникший из-за жизнедеятельности людей, который мешает людям или приносит вред животным, называется шумовым загрязнением. Он вызывает у людей и животных ряд психологических и физиологических проблем, таких как бессонница, усталость, нарушения кровяного давления, нарушение слуха при сильном шуме, и другие проблемы.

Источники шума

Шум может быть вызван множеством факторов. Транспорт - один из главных шумовых загрязнителей окружающей среды. Особенно много шума производят самолеты, поезда и автомобили. Оборудование на различных предприятиях в промышленной зоне также является источником шума. Люди, живущие возле ветряных турбин, часто жалуются на шум и связанные с ним недомогания. Ремонтные работы, особенно те, что связанны с использoванием отбойных молотков, обычно производят много шума. В некоторых странах люди держат собак, часто - в целях безопасности. Эти собаки, чаще всего те, что живут во дворе, лают, если рядом другие собаки и незнакомые люди. Это не так заметно днем, когда вокруг и так много шума, но очень хорошо слышно ночью. Шум в жилых районах также часто вызван громкой музыкой в домах, барах и ресторанах.