Комнатная метеостанция. Как сделать погодную станцию своими руками Как расшифровать информацию и пользоваться прибором

  • Эта "метеостанция своими руками" предназначена для работы в походных условиях, а не внутри и снаружи помещения, как сказано вначале статьи. Батарейки, собственный экран. Гораздо проще и удобней было бы использовать для этого ноутбук.
  • Не могу скачать прошивки:(Можете запостить в другом месте? или замылить на allmail@ mail.ru
  • Довольно все замудренно и дороговато.
  • Согласен, что замудренно, но полюбому получается сопостовимо (по деньгам) с китайскими погодниками, а устройство рекомендую рассматривать как один из "кубиков" умного дома, чуточку поправив прошивку данные можно передавать по RS232 например на ПК используемый как фоторамка-центр управления дома или КПК.
  • К стати прошива и исходники нормально скачиваются с англоязычной странички проекта
  • Смутно представляю, для чего такая сложность в быту. Самая крутая станция не даст прогноза сравнимого с тем, что дает космическая съемка. Разве что - в походах в такую глушь, где нет ни мобильного ни радио-интернета. И то врядли: все серьезные компании, у которых жизнь может от погоды зависеть, (планеристы, альпинисты) имеют спутниковый навигатор, а значит - и выход на прогноз.
  • Так это устройство не дает прогноза, а выводит на экран текущие значения параметров погоды. И основное назначение ее не походное, а, к примеру, измерение параметров в теплице и передача ее в дом. Кстати, начало статьи можно перевести и следующим образом: "Погодная станция с измерением давления, относительной влажности, внутренним и отдаленным наружным измерением температуры" , где не говорится о помещении.
  • Схема немного мудреная, но интересная и найдет применение в быту и производстве, для отслеживания параметров помещений, для автоматизации каких-либо процессов.
  • Доброе время суток! Укого есть скачанные файлы печатки и прошивки, скиньте, пожалуйста форум,или на [email protected] . Заранее благодарен!
  • Ну,если,ни у кого нет файлов прошивки и печатной платы, то скажите - какой КРЕТИН удалил все ети файлы?
  • Советую успокоиться, такое ощущение, что весь мир Вам по гроб чем-то обязан. См. страницу первоисточника http://www.elxproject.com/elx/news.php?readmore=36
  • У меня уже года два такая с беспроводным датчиком температуры и влажности.
  • Да нет, никто мне ничем не обязан. За резкость,конечно, извиняюсь - просто был я по етой ссылке.Такое впечатление по етой ссылке создалось,что я, просто категорически обязан зарегиться в Face Book, а ето "сильно" раздражает.Скачать не получилось. Просьба - если укого есть, скачанный архивчик - скинте,пожалуйста, если не трудно, на форум. Заранее благодарю. P.S Я так думаю, форумы,кроме основной функции, так же существуюти для того,что бы избавлять людей от подобного геморроя - просмотра дибильной рекламы и принудительной регистрации в соцсетях и.т.д
  • Пожалуйста, архив во вложении. Схемы, печатки, исходники, прошивки. Не стоит принимать "близко к сердцу", но [I]на будущее вам - не стоит сразу ругаться и возмущаться. Я, как и многие форумчане, прекрасно понимают, что вам нужна какая-то инфа, файлы, схемы и возможно даже очень срочно нужны, но не всегда вы это получаете моментально. Я видел вашу просьбу в сообщении от 28.07.2013, но ответить или чем-то помочь до сегодня не мог (может и других пользователь форума похожая ситуация) Если бы админ быстренько не вмешался, то возможно, что в ваш адрес посыпались бы высказывания и слова "определенной направленности", а дальше "цепная реакция" с ругней, и в итоге обсуждение (тема) разрастается не по делу и остается очень плохое мнение о форуме в целом... Удачи! Если чего, спрашивайте, поможем чем сможем!
  • Добрый день VADZZ! Благодарю за архивчик!

Метеостанция построена на Picaxe микроконтроллере от Revolution Education Ltd и состоит из двух основных частей: наружный блок, который посылает свои данные каждые 2 секунды, используя передатчик на частоте 433МГц. И внутренний блок, который отображает полученные данные на 20 х 4 ЖК-дисплее, а также атмосферное давление, которое измеряется локально во внутреннем блоке.

Я пытался сохранить дизайн максимально простым и в то же время функциональным. Связь устройства с компьютером осуществляется через COM-порт. В настоящее время на компьютере непрерывно строятся графики из полученных значений, а также идет отображение значений на обычных индикаторах. Графики и показания датчиков доступны на встроенном веб-сервере, все данные сохранятся и т.о. можно посмотреть данные за любой промежуток времени.

Постройка метеостанции заняло несколько месяцев, от разработки до завершения, и в целом я очень доволен результатом. Я особенно рад, что мне удалось построить все с нуля при помощи обычных инструментов. Меня она полностью устраивает, но совершенству предела нет, и особенно это касается графического интерфейса. Я не предпринял никаких попыток коммерциализации метеостанции, но если вы думаете о создании метеостанции для себя, то это хороший выбор.

Уличные датчики

Датчики используются для измерения температуры, влажности, осадков, направления и скорости ветра. Датчики представляют собой сочетание механических и электронных устройств.

Датчик температуры и относительной влажности воздуха

Измерение температуры, пожалуй, проще всего. Для это используется датчик DS18B20. Для измерения влажности был использован HIH-3610, выдающий напряжение 0.8 - 3.9В при влажности 0% до 100%

Я установил оба датчика на небольшой печатной плате. Плата установлена внутри самодельного корпуса, который предотвращает воздействие дождя и других внешних факторов.

Упрощенный код для каждого из датчиков приведен ниже. Более точный код, который считывает значения с точностью до одной десятой, показан на сайте Питера Андерсона . Его код используется в окончательном варианте метеостанции.

Датчик температуры обеспечивает точность ± 0.5 °C. Датчик влажности обеспечивает точность до ± 2%, так что это не очень важно, сколько знаков доступно после запятой!

Пример участка из программного обеспечения, работающего на ПК.

Температура

Main: readtemp B.6, b1 ; read value into b1 if b1 > 127 then neg ; test for negative sertxd (#b1, cr, lf) ; transmit value to PE terminal pause 5000 goto main neg: b1 = b1 - 128 ; adjust neg value sertxt ("-") ; transmit negative symbol sertxt (#b1, cr, lf) ; transmit value to PE terminal pause 5000 goto main

Влажность

Main: readadc B.7,b1 ; read humidity value b1 = b1 - 41 * 100 / 157 ; change to %RH sertxd (#b1, "%", cr, lf) pause 5000 ; wait 5 seconds goto main

Расчет показаний датчика влажности

Расчеты взяты из документации датчика Honeywell HIH-3610. На графике показывана стандартная зависимость при 0 °C.

Напряжение с датчика измеряется на входе АЦП (B.7) микроконтроллера Picaxe 18M2. В коде, показанном выше, значение, которое представлено в виде числа от 0 до 255 (т.е. 256 значений), хранится в переменной b1.

Наша схема питается от 5В, так что каждый шаг АЦП равен:
5/256 = 0.0195 В.

На графике видно начально значение АЦП 0.8 В:
0.8 / 0.0195 = 41

Взяв значения из графика, наклон графика (с учетом смещения) примерно:
Напряжение выхода / % относительной влажности или
(2.65 - 0.8) / 60 = 0.0308 В в% RH
(В документации 0.0306)

Рассчитаем кол-во шагов АЦП на 1% влажности:
(В на % RH) / (шаг АЦП)
0.0308 / 0.0195 = 1.57

% RH = значение с АЦП - смещение АЦП / (шаги АЦП в % RH), или
% RH = значение с АЦП - 41 / 1.57

Итоговая формула расчет для микроконтроллера будет выглядеть: % RH = значение с АЦП - 41 * 100/157

Защитный корпус

Начните с разрезания каждой панели на две части. Планки на одной части будут крепко прикреплены с двух сторон, а на второй части только с одной стороны. Не выбрасывайте эти части - они используются.

К целым частям прикрепите два деревянных бруска 20мм х 20мм сверху и с низу, и прикрутите к ним другие части.

Обрежьте одну из частей с одной целой стороной по размеру и приклейте ее к внутренней стороне одной из сторон. Убедитесь, что планки приклеены так, что образуют вместе "^" форму. Сделайте так со всеми сторонами.

Измеритель скорости и направления ветра

Механическая часть

Датчики скорости и направления ветра представляют собой сочетание механических и электронных компонентов. Механическая часть идентична для обеих датчиков.

12мм вставка из фанеры (marine ply) находится между трубой из ПВХ и диском из нержавеющей стали в верхнем конце трубы. Подшипник приклеен к диску из нержавеющей стали и удерживается нержавеющей пластиной.

Как только все будет полностью собрано и настроено, открытые места герметизируются герметиком для водонепроницаемости.

Остальные три отверстия на фотографии предназначены для лопастей. Лопасти длиной 80 мм дают радиус поворота 95мм. Чашки 50 мм в диаметре. Для них я использовал обрезанные флаконы от одеколона, которые имеют почти сферическую форму. Я не уверен в их надёжности, поэтому сделал их легкозаменяемыми.

Электронная часть

Электроника для датчика скорости ветра состоит только из транзисторного ключа, фотодиода и двух резисторов. Они монтируются на небольшой круглой ПП диаметром 32мм. Они установлены в трубе свободно, чтобы влага в случае её попадания стекала вниз не задевая электронику.

Анемометр - один из трех датчиков, который необходимо откалибровать (два других – счетчик осадков и датчик атмосферного давления)

Фотодиод обеспечивает два импульса за один оборот. В простой «последовательной» системе, к которой я стремился (все датчик опрашиваются поочередно), должен быть компромисс между длиной времени, затрачиваемого на опрос каждого датчика (в данном случае, подсчет импульсов) и отзывчивость системы в целом. В идеале, на полный цикла опроса всех датчиков должно уйти не более 2-3 секунд.

На фото выше проверка датчика при помощью мотора с регулируемыми оборотами.

; LCD-specific commands shown in blue hsersetup B9600_4, %10000 ; Use LCD Pin 1, no hserin hserout 0, (13) : pause 100 ; Initialize LCD hserout 0, (13) : pause 100 hserout 0, (13) : pause 100 pause 500 hserout 0, ("ac1", 13) ; Clear display pause 50 hserout 0, ("acc", 13) hserout 0, ("ac81", 13, "adcount: ", 13) ; Print the headings pause 10 hserout 0, ("ac95", 13, "adpulsin: ", 13) ; Print the headings pause 10 do count C.2, 1000, w0 ; Count the pulses (two per rev) w1 = 0 for b8 = 1 to 2 ; Measure pulse length twice pulsin C.2, 1, w2 ; per rev and... w1 = w1 + w2 next w1 = w1 / 2 ; ...calculate average hserout 0, ("ac89", 13, "ad ", #w0, " ", 13) ;Print the count value hserout 0, ("ac9d", 13, "ad ", #w1, " ", 13) ;Print the pulse-length value pause 100 loop

Я хотел откалибровать его при движении на автомобиле, но на это не было времени. Я живу в относительно плоской местности с аэропортом в нескольких километрах рядом, поэтому я калибровал датчик, сравнивая мои показания скорости ветра с показаниями аэропорта.

Если бы мы имели 100% КПД и лопасти вертелись-бы со скоростью ветра, то:
Радиус ротора = 3.75"
Диаметр ротора = 7.5" = 0.625 фута
Длина окружности ротора = 1.9642 фута

1 фут/мин = 0.0113636 м/ч,
1.9642 фут/мин = 1 об = 0.02232 м/ч
1 м/ч = 1 / 0.02232 об

1 м/ч = 44.8 об
? м/ч = об / 44.8
= (об/мин * 60) / 44.8

Поскольку за поворот выходит два импульса
? м/ч = (импульсов в секунду * 30) / 44.8
= (импульсов в секунду) / 448

Датчик направления ветра - механическая часть

В датчике направления ветра, вместо алюминиевой пластины используется магнит, а вместо оптоэлектронного узла - специальная микросхема AS5040 (магнитный энкодер).

На фото ниже показан 5мм магнит, установленный на торце центрального винта. Выравнивание магнита относительно микросхемы очень важно. Магнит должен быть точно по центру на высоте около 1мм над микросхемой. Как только все будет точно выровнено, датчик будет работать правильно.

Датчик направления ветра - электронная часть

Существуют различные схемы для измерения направления ветра. В основном они состоят либо из 8 герконов расположенных под углом 45 градусов с интервалом вращающегося магнита или потенциометра который может полностью проворачиваться.

Оба метода имеют свои преимущества и недостатки. Основным преимуществом является то, что они оба просты в реализации. Недостатком является то, что они подлежат износу - особенно потенциометры. Альтернативой использованию герконов будет использовать датчика Холла для решения механического износа, но они по-прежнему ограничиваются 8 различными позициями... В идеале, я хотел бы попробовать что-то другое и в конечном счете решил о - поворотном магнитном датчике IC. Хотя это устройство для поверхностного монтажа (которого я стараюсь избегать), оно имеет ряд преимуществ, которые делают ее использование привлекательным!

Он имеет несколько различных форматов вывода, два из которых наиболее подходит для нашей цели. Наилучшая точность достигается с помощью SSI интерфейса. AS5040 выдает импульсы длиной от 1 мкс при 0° и до 1024 мкс при 359,6°

Проверка калибровки датчика направления ветра:

Do readadc10 B.3, w0 ;Read from AS5040 magnetic bearing pause 100 w0 = w0 * 64 / 182 ; Convert to 0 - 360 (degrees) debug ; Display in Prog/Edit debug window loop

Измеритель уровня осадков

Насколько это возможно, я сделал дождемер из пластика и нержавеющей стали, основание сделано из алюминия толщиной 3 мм для жесткости.

В измерителе уровня осадков есть две ведерка. Каждое ведерко вмещает до 6 мл воды до его смещения центра тяжести, которое заставляет его вылить воду в ёмкость и подать сигнал на датчик. Когда ведро опрокидывается, алюминий флаг проходит через оптический датчик, посылающий сигнал на электронику наружного блока.

На данный момент, я оставил его с прозрачными стенками (потому что интересно наблюдать это работает!). Но я подозреваю, что нужно покрасить его белой краской, чтобы отражать тепло летом, во избежание испарения. Я не мог найти маленькую воронку, поэтому пришлось сделать её самому. Обратите внимание на проволоку внутри воронки и по центру желоба. Это поможет остановить поверхностное натяжение воды в воронке и помогает капать воде. Без проволоки, дождь имел бы тенденцию к "водовороту", и его траектория была-бы непредсказуемой

Оптодатчики крупным планом:

Электронная часть дождемера

Из-за случайного характера работы датчика, программное прерывание в микроконтроллере наружного блока, казалось, логичный подход. К сожалению, некоторые команды программы, отключают механизм прерываний в то время, как они выполняются, т.о. есть вероятность, что сигнал придет в никуда. По этим причинам, дождемер имеет собственный микроконтроллер 08М Picaxe.

Использование отдельного чипа позволяет использовать его для создания достаточно точной 1-часовой задержки для того, чтобы считать ведра в час.

Калибровка

Picaxe 18м2 получает текущее количество ведерок в час и выводит его на дисплей и компьютер.

В качестве отправной точки, я использую следующие данные:
Воронка диаметров 120мм и емкость площадью 11,311мм2
1 мм дождя = 11,311мм3 или 11,3 мл.
Каждое ведро это 5,65 мл. Таким образом, 2 ведра 2 х 5,65 = 11,3 мл (или 1 мм) осадков. Одно ведро = 0,5 мм осадков.

Для сверки, я купил дешевый стакан для измерения осадков.

Для вышеприведенной схемы и схемы 08М Picaxe для датчика используется одна и та же топология печатной платы. Устройство питается от аккумулятора 12V 7Ah через стабилизатор 7805.
Я использовал набор RF Connect kit для беспроводной связи на 433 МГц. Комплект содержит пару специально запрограммированных PIC контроллеров. Комплект беспроводных модулей в ходе испытаний зарекомендовал себя как достаточно надежный.

На ПП установлен 08М Picaxe и 18м2. Каждый из них имеет свой собственный разъем программирования. Отдельные разъемы, каждый со своим +5 В, предназначены для каждого датчика - за исключением температуры и влажности.

Обратите внимание, что я нарисовал чертёж в Paintshop Pro поэтому я не могу гарантировать точность расстояния между выводами.

Внутренний блок

Во внутреннем блоке используетя 18м2 Picaxe, датчик давления и ЖК-дисплей. Также есть стабилизатор напряжения 5В.

Датчик давления

После нескольких неудачных попыток, я остановился на MPX4115A. Хотя другие датчики имеют диапазон измерения немного больше, они труднодоступны. Кроме того, другие датчики, как правило, работают от 3,3В и требуют дополнительный стабилизатор. MPX4115A выдает аналоговое напряжение от 3,79 и до 4,25В пропорционально давлению. Хотя это почти достаточное разрешение для обнаружения 1 мбар изменения давления, после некоторого обсуждения на форуме, я добавил АЦП MCP3422. Он может работать в 16-битном режиме (или выше) по сравнению с 10-битном режиме Picaxe. MCP3422 может быть связан (как в нашей схеме) в дифференциальный режим с аналоговым входом от датчика. Основным преимуществом является то, что это позволяет корректировать выход датчика, тем самым легко компенсировать ошибки MPX4115A и обеспечить простой способ калибровки датчика.

MPC3422 на самом деле имеет два дифференциальных входа, но так-как один не используется они замкнуты. Выход из MCP3422 имеет интерфейс I2C и соединяется с SDA и SCL контактам на 18м2 Picaxe – выводы B.1 и B.4 соответственно. С моей точки зрения, единственный недостаток в использовании MCP3422 том, что это небольшое устройство для поверхностного монтажа, но я его припаял к адаптеру. В дополнение к I2C интерфейсу MCP3422 18м2 просто обрабатывает поступающие данные из 433МГц беспроводной приемник, выводит данные на дисплей и передает данные на ПК. Для того чтобы избежать ошибок внутреннего блока когда компьютер не работает, нет никаких ответов от ПК. Внутренний блок передает данные и идет дальше. Он передает данные приблизительно в 2-секундным интервалом, чтобы потери данных быстро компенсировались следующий раз. Я использовал незадействованные порты на 18м2 для подключения кнопки на передней панели. Переключатель S1 (вход С.5) используется для включения подсветки ЖК-дисплея. Переключатель S2 (вход C.0) сбрасывает значение давления (мбар) на ЖК-дисплее. Переключатель S3 (вход C.1) переключает осадки отображаемые на ЖК-дисплее между общим в предыдущий час и текущими. Кнопки необходимо удерживать более 1 секунды для их реакции.

Сборка внутреннего блока

Как и в печатной плате для наружного блока, я нарисовал макет вручную с помощью Paintshop Pro, так что в расстояниях могут быть ошибки

Плата немного больше, чем это необходимо, чтобы вписаться в пазы в алюминиевом корпусе.
Я сознательно сделал разъем для программирования немного "внутрь" от края платы, чтобы предотвратить его прикосновение к корпусу. Вырез для ЖК-дисплея производится высверливание и подгонкой до точных размеров.

На фото показано всё уже установленное в корпус.

Штырьки на плате делают сложным её установку в корпус, поэтому мне пришлось отпаять их и припаять дисплей к плате проводами.

Внешний блок - код Picaxe

; ================================================================== ; Main 18M2 code for the Picaxe Weather Station Outdoor (Transmitter) Unit ; Decimal precision Humidity & Temperature routines, ; copyright, Peter H Anderson, Baltimore, MD, Jan, "04 ; ; ================================================================== #Picaxe 18M2 Symbol HValue = w0 Symbol HighWord = w1 Symbol LowWord = w2 Symbol RH10 = w3 Symbol HQuotient = b0 Symbol HFract = b1 Symbol X = b0 Symbol aDig = b1 Symbol TFactor = b2 Symbol Tc = b3 Symbol SignBit = b4 Symbol TValue = w4 Symbol TQuotient = b10 Symbol TFract = b11 Symbol TempC_100 = w6 Symbol MagDir = w7 Symbol MagDirLo = b14 Symbol MagDirHi = b15 Symbol WindSpeed = w8 Symbol WindSpeedLo = b16 Symbol WindSpeedHi = b17 Symbol ThisHour = b18 Symbol LastHour = b19 Symbol RainRequest = b20 ; Hardware Symbol HumidRaw = B.7 Symbol TempRaw = B.6 Symbol DirRaw = B.3 Symbol Speed = B.0 do ; Read Humidity ReadADC10 HumidRaw, HValue ;Get Humidity (HValue) HighWord = 1613 ** HValue ; calculate RH LowWord = 1613 * HValue RH10 = LowWord / 1024 LowWord = Highword * 64 RH10 = RH10 + LowWord RH10 = RH10 - 258 pause 100 ; Read temperature Readtemp12 TempRaw, TValue ; Get temperature SignBit = TValue / 256 / 128 if SignBit = 0 then positive ; It"s negative so TValue = TValue ^ $ffff + 1 ; take twos comp positive: TempC_100 = TValue * 6 ; TC = value * 0.0625 TValue = TValue * 25 / 100 TempC_100 = TempC_100 + TValue TQuotient = TempC_100 / 100 TFract = TempC_100 % 100 / 10 X = TQuotient / 10 ; Calculate temperature correction factor for Humidity if SignBit = 0 then SignBit = " " else SignBit = "-" endif if SignBit = "-" then X = 4 - X else X = X + 4 endif GoSub TempCorrection ; compensate RH HQuotient = RH10 / 10 ; Calculate RH Quotient and... HFract = RH10 % 10 ; ...decimal place. if HQuotient > 99 then ; Over range HQuotient = 99 HFract = 9 endif if HQuotient > 127 then ; Under range HQuotient = 0 HFract = 0 endif ; Read AS540 magnetic encoder for wind direction readadc10 DirRaw, MagDir ; Read from AS5040 magnetic bearing pause 100 ; Read rpm from windspeed counter count Speed, 1000, WindSpeed ; Every 30th cycle (approx 1 minute), request rain gauge data from 08M inc RainRequest if RainRequest >= 30 then high C.1 serin , C.0, N2400, ("r"), LastHour, ThisHour ; Rain counters low C.1 RainRequest = 0 endif ; Send data to Indoor Unit in 8 byte blocks ; First group needs no calibration so calculations are done here first. ; Second group will need "tweaking" - more easily done at indoor end. serout C.2, N2400, ("t", SignBit, TQuotient, TFract, HQuotient, HFract, "A", "B") pause 100 serout C.2, N2400, ("m", MagDirHi, MagDirLo, WindSpeedHi, WindSpeedLo, LastHour, ThisHour, "C") loop TempCorrection: Lookup X, (87, 89, 91, 93, 95, 97, 99, 101, 103, 106, 108, 110, 113, 116, 119, 122, 126), TFactor " -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 if TFactor < 100 then aDig = TFactor / 10 RH10 = RH10 * aDig / 10 TFactor = TFactor % 10 aDig = TFactor RH10 = RH10 * aDig / 100 + RH10 else TFactor = TFactor % 100 aDig = TFactor / 10 RH10 = RH10 * aDig / 10 + RH10 TFactor = TFactor % 10 aDig = TFactor RH10 = RH10 * aDig / 100 + RH10 endif return

Использовано памяти = 295 байт из 2048

Счетчик количества осадков - 08M код

#picaxe 08M Symbol ThisHour = b2 ; Store the current sensor count in b2 Symbol LastHour = b3 ; Save the previous hour"s count in b3 ;Hardware definitions Symbol DataRequest = pin3 Symbol BucketSensor = pin4 setint %00010000, %00010000 ; pin4 is interrupt pin main: for w0 = 1 to 60000 ; Loop for 1 hour pause 60 next LastHour = ThisHour ; Update Last hour"s count with ThisHour = 0 ; current hour & reset current hour goto main ; Do the next hour interrupt: setint %00010000, %00010000 ; Re-instate interrupt if DataRequest = 1 then ; Was the interrupt from the 18M2 ? serout 2, N2400, ("r", LastHour, ThisHour) ; Yes, so send previous hour"s count & curent count. do: loop while DataRequest = 1 ; Wait until 18M2 stops requesting before continuing endif if BucketSensor = 1 then ; Was the interrupt from the rain sensor? inc ThisHour ; Yes, so increment bucket-tip count do: loop while BucketSensor = 1 ; Make sure flag has cleared sensor before continuing endif return

Внутренний блок - код Picaxe

;============================================================================ ; Main Indoor (Receiver) Program. ; ; Receives data from outdoor unit, displays on LCD and passes data on to PC ; Also measures the barometric pressure (thanks to "matherp") ;============================================================================ #PICAXE 18M2 ; Variable Definitions (b2 to b5 are re-used for mBar code when they become available) symbol Quotient = b2 symbol Fract = b3 symbol SignBit = b4 symbol Humidity = b5 symbol HFract = b14 symbol Dir = w5 symbol DirLo = b10 symbol DirHi = b11 symbol Speed = w3 symbol SpeedLo = b6 symbol SpeedHi = b7 symbol RainCountThisHour = b12 symbol RainCountLastHour = b13 symbol LCDRainWhole = b21 symbol LCDRainFract = b22 symbol LastOrThis = b23 ; MCP3422 ADC variables symbol mb900 = 17429 ; ADC reading for 900Mbar, then add 72.288 counts per mbar symbol adj0 = 72 symbol mBarADCValue = w0 symbol adj1 = b4 ; used to add 1 count every 4 mbar symbol adj2 = b5 ; used to add 1 count every 24 mbar symbol mBar = w4 ; Housekeeping variables symbol lastmbar = w8 ; Remember previous mBar reading symbol RiseFall = b18 ; Indicator for pressure rising or falling (up arrow or down arrow) symbol active = b19 ; Telltale shows activity on LCD screen symbol LCD_Status = b20 ; Is LCD Backlight on or off (0 or 1)? ; Hardware Definitions symbol Wireless = C.7 ; Incoming connection from Wireless receiver/decoder symbol Computer = C.2 ; Outgoing serial connection to computer symbol LCD = pinC.5 ; Front-panel button to blank / unblank LCD backlight symbol ClearRiseFall = pinC.0 ; Front-panel button to clear pressure "rising / falling" indicator symbol LastOrThisSwitch = pinC.1 ; Front-panel button to display current or previous hour"s rainfall Init: hsersetup B9600_4, %10000 ; Use LCD Pin 1, no hserin ; ByVac 20x4 IASI-2 Serial LCD hi2csetup i2cmaster, %11010000, i2cfast, i2cbyte ; Initialize I2C for MCP3422 ADC chip. hi2cout (%00011000) ; set MCP3422 for 16 bit continuous conversion pause 500 hserout 0, (13) : pause 100 ; Initialize LCD hserout 0, (13) : pause 100 hserout 0, (13) : pause 100 pause 500 hserout 0, ("ac50", 13) hserout 0, ("ad", 32, 32, 32, 32, 49, 42, 36, 32, 13) ; Define down arrow character (char 10) hserout 0, ("ac1", 13) ; Clear display pause 50 hserout 0, ("acc", 13) ; Hide cursor hserout 0, ("ac81", 13, "ad ", $df, "C", 13) ; Print the headings hserout 0, ("ac88", 13, "admBar", 13) hserout 0, ("ac8e", 13, "adRH %", 13) hserout 0, ("acd5", 13, "ad", "dir", 13) ; Print footings hserout 0, ("acdc", 13, "ad", "mph", 13) ; hserout 0, ("ace3", 13, "ad", "mm", 13) lastmbar = 0 ; Initialize variables LastOrThis = "c" ;========================================================================== ; Main Loop ;========================================================================== main: ; Check if a front-panel switch is pressed. The Picaxe interrupt mechanism is ; almost permanently disabled due to the large number of serin and serout commands ; so sprinkling the program with "gosub switches" to check the switch status is more ; effective that interrupts. gosub switches ; Get first group of values from outdoor unit via 433MHz radio link. serin Wireless, N2400, ("t"), SignBit, Quotient, Fract, Humidity, HFract, b15, b15 ; Flash "telltale" on LCD to indicate activity and successful "serin" from wireless. gosub telltale ; Display first group on LCD hserout 0, ("acc0", 13) hserout 0, ("ad", SignBit, #Quotient, ".", #Fract, " ", 13) hserout 0, ("acce", 13) hserout 0, ("ad", #Humidity,".", #HFract, " ", 13) gosub switches ; Send first group to computer COM port ; Each group has a start identifier, data and an end identifier: ; Start = "xS", End is "xE" eg Wind Start is WS, Wind End is WE ; Multiple data are separated by a single space character. serout Computer, N2400, ("TS", SignBit, #Quotient," ", #Fract, "TE") ; Temperature serout Computer, N2400, ("HS", #Humidity, " ", #HFract, "HE") ; Humidity ; Check switches again and at regular intervals throughout program. gosub switches ; Get second group of values from outdoor unit radio link. serin Wireless, N2400, ("m"), DirHi, DirLo, SpeedHi, SpeedLo, RainCountLastHour, RainCountThisHour, b15 gosub telltale Speed = Speed * 300 / 448 ; Estimated conversion from pulses/sec to mph Dir = Dir * 64 / 182 ; Convert 0 - 1023 to 0 - 359 degrees ; To preserve precision, rain gauge has to be calibrated by adjusting the ; mechanical stops on the tipping bucket so that 1 tip is 0.5 mm of rain. if LastOrThis = "c" then ; Decide whether to display previous hour"s LCDRainWhole = RainCountThisHour / 2 ; rainfall or the current hour"s. LCDRainFract = RainCountThisHour * 5 // 10 else LCDRainWhole = RainCountLastHour / 2 ; LCDRainFract = RainCountLastHour * 5 // 10 endif ; Send second group to LCD hserout 0, ("ac95", 13) hserout 0, ("ad", #Dir, " ", 13) hserout 0, ("ac9c", 13) hserout 0, ("ad", #Speed, " ", 13) hserout 0, ("aca1", 13) hserout 0, ("ad", LastOrThis, " ", #LCDRainWhole, ".", #LCDRainFract, " ", 13) ; Send second group to computer COM port serout Computer, N2400, ("WS", #Dir," ", #Speed, "WE") ; Wind serout Computer, N2400, ("RS", #RainCountLastHour," ", #RainCountThisHour, "RE") ; Rain gosub switches ; Thanks to "matherp" on the Picaxe forum for the mbar code loop: ; Measuring atmosperic pressure with a MPX4115A ; Analogue to digital conversion using a MCP3422 ; MPX output to V+, 2.5V to V- ; ADC in 16 bit mode hi2cin (b1,b0,b2) ; Read in the ADC reading and the status byte from MCP3422 adj1 = 0 adj2 = 0 w1 = mb900 mbar = 900 do while mBarADCValue > w1 ; mBarADCValue = w0 = b1:b0 inc mbar w1 = w1 + adj0 inc adj1 if adj1 = 4 then inc adj2 w1 = w1 + 1 adj1 = 0 endif if adj2 = 6 then w1 = w1 + 1 adj2 = 0 endif loop gosub switches gosub telltale ; Send pressure to computer COM port serout Computer, N2400, ("PS:", #mbar, "PE") ; Initialize previous pressure reading (lastmbar) if not already set if lastmbar = 0 then lastmbar = mbar RiseFall = " " endif ; Display up arrow or down arrow if pressure has changed if mbar > lastmbar then RiseFall = "^" ; ^ lastmbar = mbar endif if mbar < lastmbar then RiseFall = 10 ; Custom LCD character. Down arrow lastmbar = mbar endif hserout 0, ("acc7", 13) hserout 0, ("ad", RiseFall, #mbar, " ",13) gosub telltale goto main ; Check if one of the front panel buttons is pressed. switches: if LCD = 1 then ; LCD Backlight on/off Button is pressed if LCD_Status = 0 then ; Backlight is on so... hserout 0, ("ab0", 13) ; Turn it off LCD_Status = 1 else hserout 0, ("ab1", 13) ; Else turn it on. LCD_Status = 0 endif do: loop while LCD = 1 ; Don"t return while button is pressed endif if ClearRiseFall = 1 then ; Pressure rise/fall button is pressed RiseFall = " " ; Clear indicator and... hserout 0, ("acc7", 13) ; ... update display. hserout 0, ("ad", RiseFall, #mbar, " ",13) do: loop while ClearRiseFall = 1 endif if LastOrThisSwitch = 1 then ; Rain Previous Hour / Last Hour button. if LastOrThis = "c" then LastOrThis = "p" LCDRainWhole = RainCountLastHour / 2 ; Recalculate values and re-display to LCDRainFract = RainCountLastHour * 5 // 10 ; give visual confirmation of button-press else LastorThis = "c" LCDRainWhole = RainCountThisHour / 2 ; LCDRainFract = RainCountThisHour * 5 // 10 endif hserout 0, ("aca1", 13) hserout 0, ("ad", LastOrThis, " ", #LCDRainWhole, ".", #LCDRainFract, " ", 13) do: loop while LastOrThisSwitch = 1 endif return ; Flash "tell-tale" on LCD display to show activity telltale: if active = "*" then active = " " else active = "*" endif hserout 0, ("ac80", 13, "ad", active, 13) return

Использовано памяти = 764 байт из 2048

Программное обеспечение для ПК

Программное обеспечение, работающее на ПК было написано с использованием Borland Delphi 7. Оно довольно примитивно в его нынешнем виде, но это, по крайней мере, показывает связь Picaxe с компьютером.

Графики могут быть выбраны для показа в период 1 час или 12 часов. Графики можно прокручивать вперёд-назад с помощью мышки. Они могут быть сохранены. Для этого необходимо кликнуть по ним правой кнопкой мыши и указать имя и файл значения. Можно настроить ограниченный набор APRS данных, записываемых раз в минуту на одну строку файла APRS.TXT и которые сохраняются в той же папке, где находится Weather.exe. Отмечу, что температура в градусах по Фаренгейту и осадки в 1/100ths на дюйм.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Датчик температуры и относительной влажности воздуха
Датчик температуры

DS18B20

1 В блокнот
Датчик влажности HIH-3610 1 В блокнот
Резистор

4.7 кОм

1 В блокнот
Измеритель скорости и направления ветра
Фототранзистор ИК 1 В блокнот
Светодиод ИК 1 В блокнот
Резистор

220 Ом

1 В блокнот
Резистор

4.7 кОм

1 В блокнот
Магнитный энкодер 1 В блокнот
Электролитический конденсатор 10 мкФ 4 В блокнот
Конденсатор 100 нФ 1 В блокнот
Резистор

4.7 кОм

1 В блокнот
Резистор

10 кОм

1 В блокнот
Измеритель уровня осадков
МК PICAXE

PICAXE-08M

1 В блокнот
Выпрямительный диод

1N4148

2 В блокнот
Конденсатор 100 нФ 1 В блокнот
Резистор

4.7 кОм

1 В блокнот
Резистор

10 кОм

4 В блокнот
Резистор

22 кОм

1 В блокнот
Резистор

220 Ом

2 В блокнот
Светодиод ИК 1

Вспомнил на досуге о простой самоделке, которую встречал в журнале «Юный натуралист» и делал в восьмидесятых годах прошлого века.

С ее помощью было интересно предсказывать погоду, наблюдать на последующий день за точностью сделанных показаний.

Конечно, сравнивать эту конструкцию с метрологическими приборами не стоит, но в качестве грубого прогноза она вполне работоспособна.

К тому же подобная система позволяет развивать у детей навыки наблюдения и анализа природных явлений.

Поэтому описываю ее в статье как советы домашнему мастеру по изготовлению простого барометра из электрической лампочки и способам расшифровки полученной информации. Текстовый материал дополняется поясняющими картинками, фотографиями и видеороликом.


Как работает самодельный барометр

Для предсказания погоды используется закрытое стеклом лампочки пространство с небольшим отверстием вверху. В эту емкость залита чистая вода. На нее воздействуют:

  • атмосферное давление через прорезь в стекле;
  • влажность воздуха;
  • температура окружающей среды.

Под комплексным действием этих факторов происходит испарение поверхностного слоя с конденсацией паров внутри стеклянного баллона лампочки без выхода через отверстие. По характеру образовавшегося конденсата, его форме и плотности, судят о предстоящей погоде, предсказывают состояние атмосферы на ближайшие 12÷24 часа или чуть дольше.

Необходимые инструменты

В обязательном порядке потребуется:

  • перегоревшая или целая лампа накаливания;
  • защитные перчатки;
  • надфиль или с алмазным сверлом;
  • один кристаллик марганцовки либо обломок от грифеля из химического карандаша - не всегда.

Для изготовления крепления барометра потребуется или клей с подставкой.

Технология изготовления

На руки надевают защитные перчатки. Они будут предохранять кожу от порезов и попадания мелких осколков стекла. Лампочка хрупкая, под случайным излишнем усилии она может развалиться на мелкие осколки. Работать с ней следует очень аккуратно.

В верхней части колбы около цоколя необходимо сделать сквозное отверстие с поперечным сечением от одного до нескольких мм кв, не больше. Оно будет сообщать внутреннюю полость баллона с атмосферным воздухом.

Способы создания отверстия

Работа надфилем

Боковой гранью режущей кромки осторожно прорезают отверстие в стекле колбы.

Величину усилия необходимо контролировать: очень легко проточить большую щель или повредить хрупкое стекло. Работу выполняйте над емкостью, в которую будут падать стеклянные опилки. Это обезопасит уборку рабочего места.

Сверление отверстия в стекле

Этот метод позволяет сделать строго калиброванное отверстие круглой формы. Однако он требует практических навыков обработки стекол сверлами мелких диаметров. Работать можно дрелью или шуруповертом.

Обычное сверло для обработки металла должно быть хорошо заточено, а место сверления отмечено и очищено. Лампочку необходимо надежно зафиксировать, а дрель использовать на средних оборотах и постепенно снижать их величину. Отклонение сверла от вертикали, как и нажим, не допускается. Даже при выполнении этих требований высока вероятность повреждения колбы.

Поэтому для сверления отверстия подбирают специальные сверла с алмазным напылением наконечника. Работают ими очень осторожно.

Наполнение колбы водой

Внутрь лампочки через прорезанное отверстие необходимо налить чистой отстоявшейся или лучше кипяченной воды чуть меньше трети ее внутреннего объема.

Самодельный барометр из лампочки в принципе готов к эксплуатации. Но для удобства использования его можно:

  • подкрасить воду прибора, например, раствором марганцовки. Конденсат станет лучше виден;
  • снабдить устройством подвешивания или подставкой.

О креплении самодельного барометра

Крепежный узел прибора изготавливают для эксплуатации в одном из двух вариантах:

  1. подвешивании на ручку или крючок;
  2. стационарной установке на подоконнике.

Петля для подвешивания

Используют отрезок медной проволоки, сгибают его петлей, а свободные концы впаивают внутрь контакта цоколя.

Остается подвесить самодельный барометр на подготовленный крючок или ручку.

Подставка

Можно использовать подходящий по диаметру колпачок от бутылочки с косметикой или моющих средств.

В него вклеивают лампочку либо ее крепят другим доступным способом, например, на пластилин или замазку. Такую самодельную конструкцию прибора удобно ставить на подоконник в любом свободном месте.

Главное условие безопасности - ограничить доступ к прибору малолетних детей и домашних животных, которые могут легко опрокинуть или разбить стеклянную колбу.

Как расшифровать информацию и пользоваться прибором

Наблюдение за конденсатом

Анализировать состояние влажности в колбе, предсказывать по ней погоду поможет следующая таблица.

Состояние конденсата Прогноз погоды
Образование мелких капель конденсата на внутренних стенках колбы. Предстоит облачный день. Осадки не предвидятся.
Средней величины капли конденсата держатся на стенках. Между ними хорошо видны сухие полосы, расположенные по вертикали. Предсказывается переменная облачность.
На стенках колбы держатся капли конденсата большой величины. Ожидается кратковременная дождливая погода.
Крупные капли конденсата стекают со стенок. Предстоит дождь с грозой.
Верхняя половина колбы барометра сухая, а снизу около воды собрались крупные капли конденсата. Дождевой фронт пройдет на удалении, не затронув нашу территорию.
Стенки лампочки сухие, а на улице идет дождь. Назавтра ждем смену погоды с хорошим солнечным небом.
Влажные капли конденсата сконцентрировались на северной стенке барометра. После обеда ожидаются осадки.

Эту таблицу можно распечатать на принтере и разместить поблизости от самодельного прибора. Помнить все эти сведения не обязательно. Дети же, когда будут вовлечены в игру по метеорологии, очень быстро станут держать всю информацию в уме.

Особенности эксплуатации

Пользоваться самодельным барометром придется только в отапливаемом помещении. При отрицательной температуре вода и конденсат просто замерзнут. Располагают его на окне либо подоконнике. Желательно, чтобы оно было установлено с северной стороны здания. Считается, что так обеспечиваются более точные показания.

Объяснить это можно только тем, что такое окно меньше подвергается нагреву солнечными лучами, работает в более холодной части дома, точнее моделирует состояние погоды на улице.

О точности показаний

Наш организм, как и все живое, реагирует на изменения погоды. Особенное влияние на него оказывают давление и влажность воздуха. Поскольку они сменяются не мгновенно, а постепенно, то возникает возможность ее прогнозирования.

Для их отслеживания метеорологи используют:


Мы же значительно искажаем все эти процессы.

Исторически сложилось так, что под термином «барометр» люди стали понимать прибор, который позволяет предсказывать погоду по изменению атмосферного давления. Этому способствовало нанесение на анероидной шкале таких обозначений, как «Ясно», «Сухо», «Дождь» и других природных явлений.

Это довольно упрощенное представление о прогнозе метеорологических событий, но даже этот уровень наш самодельный прибор не сможет полностью охватить:

  • атмосферное давление в колбе немного изменяется при прохождении через строительные конструкции и отверстия;
  • на показаниях сказываются условия влажной среды комнаты, которые созданы системой вентиляции, .

К тому же в последнее время в быту стали массово использоваться . А они тоже регулируют влажность в помещениях, влияют на работу самодельного барометра.

Однако даже с учетом этих условий в летнее время можно уверенно предсказывать поведение погоды с точностью до 70%. Зимой, благодаря действию отопления, этот показатель снижается, но не критично.

Во всяком случае, его всегда можно сравнить с профессиональными расчетами метеорологических программ, выложенных в интернете, использовать для привития детям наблюдательности, развития склонности к анализу сложных природных явлений.

Этим не стоит пренебрегать, ведь изготовление самодельного барометра не составляет труда, занимает порядка десятка минут. Дети оценят вашу работу, получив обучающую игрушку-базу в виде развивающей внимание домашней метеостанции.

Сейчас предлагаю посмотреть видеоролик владельца MrSam0delkin «Барометр из лампочки».

Сегодня будет подробный рассказ о внутреннем устройстве метеостанции, которую включил в работу. От идеи до её технической реализации прошло более года, за это время пришлось решить массу ожидаемых и неожиданных проблем. Теперь обо всём по порядку...


Начнем с грабель.

Грабли №1 . Наверное кто-нить помнит что в начале прошлого года я радиомодули на базе чипа nRF24L01+ c усилителем RFX2401C и в дальнейшем собирал

Увы, данная конструкция работать не захотела. Не смотря на все попытки, мне так и не удалось обеспечить надёжную двухстороннюю связь радиомодулей на значительных расстояниях. Конструкция отняла довольно много сил и времени, но, в силу объективных причин, пришлось отказаться от этого варианта.

И тогда решил достать из закромов опытно-экспериментальный маршрутизатор TP Link MR3220 c системой OpenWRT на борту.

Принципиальная схема метеостанции несколько отличается от той, которую разрабатывал . Первое отличие - применение вместо Arduino Pro Mini платы Arduino Nano. Это позволило выполнять удалённую перепрошивку микроконтроллера, что очень удобно когда физический доступ на объект затруднён

Грабли №2 Я применил китайский клон Arduino Nano v.3.0, о котором подробнее рассказывал . Но возникла неожиданная проблема - при открытии маршрутизатором USB-порта, ардуинка стала перезагружаться. Все возможные варианты конфигурирования USB порта командой stty результата не принесли. С FT232RL такой проблемы не наблюдалось. Пришлось подключить RC-цепочку R1C1 на свободный порт GPIO7 маршрутизатора, это схемное решение позволило блокировать перезагрузку в нормальном режиме работы микроконтроллера. При необходимости перепрошивки нужно вручную включать GPIO7.


Конфигурирование порта

echo "7" > /sys/class/gpio/export

Конфигурируем GPIO7 как выход

echo out > /sys/class/gpio/gpio7/direction

Включить GPIO7

echo 1 > /sys/class/gpio/gpio7/value

Выключить GPIO7:

echo 0 > /sys/class/gpio/gpio7/value

Проверить состояние порта:

cat /sys/class/gpio/gpio7/value

Так как точность термодатчиков семейства DS1820 при отрицательных температурах оставалась под вопросом, для точного измерения температуры решил дополнительно использовать медный термометр сопротивления ТСМ-50М совместно с измерительным преобразователем Ш79. Разумеется, предварительно откалибровал систему с использованием поверенных образцовых приборов и добился погрешности измерения не более 0.2 градуса в диапазоне температур -50...+50 градусов Цельсия.

Ш79 это уже достаточно древний, весьма надёжный советский преобразователь, построенный по классической МДМ-схеме с унифицированным токовым выходом 0...5 мА или напряжением 0...10 В. В данном случае использовал токовый сигнал.

Несмотря на простую принципиальную схему, столкнулся с огромным объемом механической работы. Одно дело когда схема собрана за полчаса на макетной плате и совсем другое - когда устройству нужно придать законченный вид.

Печатная плата метеоконтроллера

Контроллер поместил в гермобокс

Маршрутизатор и метеоконтроллер закрепил на боковой стенке Ш79.

Вид сбоку

И вся эта система помещается в металлический ящик

Внутренности ящика

Так как ещё не знал в каком помещении будет установлен данный шкаф, решил сделать ему обогрев. Температура внутри ящика поддерживается обыкновенным биметаллическим термостатом, на фото выше виден его круглый корпус.

Резисторы обогрева закрыл металлическим кожухом. Круглые отверстия используются для подведения кабелей внутрь шкафа.

Конструкция в собранном виде

Выносные датчики температуры и влажности расположены на отдельной печатной плате

Для защиты от атмосферных воздействий плата покрыта лаком ХСЛ

Сверху кожух закрывает крышка

Внутрь кожуха поместил плату с датчиками и растянул её при помощи толстой рыболовной лески. Это сделано для того чтобы снизить теплопередачу между кожухом и платой датчиков. Данную конструкцию почему-то решил назвать измерительной ячейкой.

UPD: Не смотря на все предпринимаемые меры, как показала практика, солнечные лучи все-таки влияют на показания термометра - нагревается кожух и от него греется сам датчик. Поэтому в настоящее время используется уличный термокожух заводского исполнения, он показал значительно лучшие результаты. Подробнее о данном термокожухе можно почитать .

О конструкции анемометра более подробно рассказывал .

UPD: В настоящее время используется новая конструкция анемометра, подробнее можно почитать . Программа для работы с данным анемометром приведена в конце статьи.

Все выносные датчики соединяются с контроллером посредством 5 парного магистрального телефонного кабеля ТППэп длиной 100 метров. На конце кабеля распаял слегка модернизированную соединительную коробку КРТН-10.

Грабли №3 Для защиты контроллера от атмосферной статики и возможных грозовых перенапряжений хотел поставить защитные диоды 1.5КЕ7.5 на порты D2, D3, D4. Увы, собственная ёмкость данных диодов не позволила пропускать цифровые данные. Поэтому пришлось ограничиться установкой диода D1 по питанию +5V и заземлением экранной оболочки магистрального кабеля.

К данной коробочке подключаются сами датчики

Измерительная ячейка установлена на относительно открытом участке местности на высоте 3-х метров от поверхности земли, это на метр выше положенного по правилам, но сделал это намеренно, т.к. в нашей местности есть вероятность появления высоких сугробов.

Анемометр укреплён на высоте 5 метров, по хорошему нужно ставить выше, но с этим есть конструктивные сложности. Пусть пока поработает так.

Программная часть особо не изменилась: на маршрутизаторе работает php-скрипт отсылки данных на сервер narodmon

который каждые 5 минут запускается планировщиком cron

Программа ардуинки ждёт приема команды от скрипта и формирует пакет данных. Предусмотрел возможность ручной коррекции атмосферного давления для его приведения к уровню моря, метеостанции или аэродрома.

P.S. А вообще использование Wi-Fi для передачи метеоданных не оптимально, было бы лучше использовать УКВ-диапазон, собственно, так и сделано на автоматических метеостанциях. Это повысит дальность связи и снизит требования к месту установки, точнее к наличию прямой радиовидимости.

Принципиальную схему и печатные платы можно скачать

РУКОВОДСТВО ПО СОЗДАНИЮ ПРОСТОЙ ДОМАШНЕЙ МЕТЕОСТАНЦИИ СВОИМИ СИЛАМИ

Если целый день или вообще круглосуточно включен компьютер, его можно использовать для работы домашней метеостанции. Поставлена цель создать простую и недорогую метеостанцию, в которой будет задействован персональный компьютер (ПК). ПК выступает в роли считывателя, обработчика и отправителя на сайт "Метеопост" измеренных метеорологических данных. Связь между компьютером и измерительным блоком будет осуществляться по сети 1-Wire.

Состав измерительного комплекса
1. Персональный компьютер с операционной системой Windows XP и выше и наличием свободного COM порта.
2. Адаптер для COM порта (преобразователь 1wire - RS232)
3. 4-х жильный Ethernet кабель типа "витая пара", длины должно хватить от COM порта до измерительного блока
4. Блок питания на 5В постоянного тока с хорошей стабилизацией напряжения
5. Измерительный блок (установлен на улице)
6. Программное обеспечение для ПК - приложение "Метеостанция".

ВАРИАНТ №1 - ОДИН ДАТЧИК

Сначала рассмотрим самый простой вариант - это метеостанция с одним датчиком температуры. Для этого не нужен дополнительный блок питания (п.4). И система очень упрощается. Адаптер для COM порта (п.2) можно выполнить по такой схеме. Адаптер состоит из двух стабилитронов на 3.9В и 6.2В, двух диодов Шотки и одного резистора.

Схема адаптера для COM порта


Адаптер в корпусе D-SUB

Место пайки кабеля и датчика температуры, включительно и выводы датчика нужно хорошо защитить от влаги. Лучше всего применить клей на полиуретановой основе.


Гидроизоляция выводов датчика

Эта система обеспечит мониторинг температуры с точностью до десятых градуса. При этом в окне приложения будет виден график зависимости температуры воздуха от времени и иконка в трее будет всегда показывать текущую температуру. Приложение позволяет задавать интервал измерений.

СТОИМОСТЬ РАДИОДЕТАЛЕЙ - не выше 50 грн.

ВАРИАНТ №2 - ЧЕТЫРЕ ДАТЧИКА

Более сложная метеостанция с четырьмя датчиками: температура, влажность, освещенность, давление. Поскольку только датчик температуры будет цифровой, а остальные аналоговые - в системе используется четырехканальный АЦП ds2450. Этот АЦП поддерживает протокол 1-wire. Схема требует дополнительного источника питания. Источник питания должен обеспечивать высокую стабильность напряжения. Но поскольку схема выше описанного адаптера имеет недостаток - невозможность подключения к датчикам внешнего источника питания из-за отсутствия реальной массы (-), используем другую схему адаптера. Этот адаптер также умещается в корпусе разъема COM порта типа D-SUB. Теперь в кабеле задействованы три провода: масса (-), +5в и данные.


Схема адаптера для COM порта с внешним питанием

Схема измерительного блока вполне может быть выполнена даже на макетной плате. Нужно только уделить особое внимание гидроизоляции контактов. Самый простой способ это расплавить парафин и кисточкой нанести его во все оголенные места на плате. Если плата будет незащищенной от воды, будут утечки напряжения и будет много ошибок в измерениях. В нашем случае даже сотые доли Вольта существенно влияют на результаты.


Схема измерительного блока

Измерительный блок нужно разместить в корпусе и таком, чтобы плата и датчики были защищены от прямого воздействия осадков и солнечного излучения. Для этих целей хорошо подходит коробка из плотного пенопласта. В стенках коробки (дно и стенка с теневой стороны) нужно сделать побольше отверстий для вентиляции. Стенки коробки изнутри желательно обклеить алюминиевой фольгой для дополнительной защиты от инфракрасного излучения, иначе будет погрешность измерения температуры. Все датчики, кроме освещенности, размещаются прямо на плате. Датчик освещенности (фоторезистор) выносится из платы на проводах и устанавливается в отверстии дна пенопластового корпуса. Так, чтобы поверхность датчика смотрела вниз. В таком случае на датчик не будут попадать осадки и особенно зимой это убережет его от обледенения. Датчик освещенности для гидроизоляции нужно обработать, например, прозрачным клеем на полиуретановой основе (силиконовый герметик тест не прошел, он давал утечку тока). Обработать включительно (!) и светочувствительную зону фоторезистора. Выводы датчика залить клеем и разместить их можно в изоляционной трубочке. Концы выводов припаять к маленькой плате. А уже провода от измерительного блока припаять к этой плате. Места пайки залить парафином. Иначе, когда идет проливной дождь с ветром, метеостанция может оказаться неработоспособной и придется разбирать ее и все высушивать. Блок можно соединить с кабелем с помощью разъема. Но нужно использовать специальный влагозащитный разъем - система будет работать в сложных погодных условиях.

Если приходится размещать корпус за окном многоэтажки (нет возможности установить на стойке у земли) то коробку нужно удалить от стены дома насколько это возможно, на кронштейне. Иначе нагрев воздуха от стены дает очень искаженные данные о температуре. В условиях частного дома лучше конечно изготовить настоящую метеобудку. Нужно позаботиться о надежном креплении корпуса, иначе сильные порывы ветра могут оторвать нашу конструкцию.


Измерительный блок на кронштейне

Выходное напряжение блока питания (БП) должно быть в пределах 4.8-5.3В. Подойдет и зарядка от старого телефона. Однако если в блоке питания нет стабилизатора - нужно добавить его в блок питания, т.к. для точности измерений очень важно наличие стабильного напряжения. Можно хотябы проверить тестером - изменяются ли десятые или сотые волта на выходе БП. Скачки десятых волта не допускаются. Простая схема стабилизатора на 5в приведена ниже. На входе БП может быть от 7 до 17В. На выходе будет около 5В. После этого нужно подключить наш кабель (который идет к измерительному блоку) к БП и измерить напряжение тестером на другом конце кабеля. Это напряжение может быть несколько ниже, чем непосредственно на выходе БП, из-за сопротивления кабеля. Это измеренное напряжение нужно ввести в настройках приложения как "Напряжение питания датчиков".


Типичная схема стабилизатора напряжения

СТОИМОСТЬ КОМПЛЕКТУЮЩИХ ДЛЯ МЕТЕОСТАНЦИИ

Примерная стоимость радиодеталей (цены 2015 года по магазину ).
1. Датчик температуры ds18b20 - 25 грн
2. АЦП ds2450 - 120 грн
3. Фоторезистор LDR07 - 6 грн
4. Датчик влажности HIH-5030 - 180 грн
5. Датчик давления MPX4115A- 520 грн.
ВСЕГО: 850 грн или 37$

Остальные элементы в сумме стоят не выше 50 грн, блок питания можно взять, например, со старой "зарядки" для телефона.


Маркировка радиоэлементов

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ МЕТЕОСТАНЦИИ

Мы разработали приложение для Windows, которое предоставим бесплатно любому желающему собрать такую метеостанцию. Оно позволит вам на своем ПК наблюдать за погодой.


Окно приложения для ПК

В системном трее отображается температура воздуха

Все измеренные данные приложение может отправлять на наш сервер "Метеопост" и на специальной странице (пример) можно просматривать все метеоданные с браузера ПК. Также страница адаптирована и для браузера мобильного телефона.


Снимок экрана браузера мобильного телефона

ЗАКЛЮЧЕНИЕ
Можно сэкономить на стоимости деталей, если покупать их у китайцев на AliExpress. Возможно собрать метеостанцию без любого из датчиков, за исключением датчика температуры. У нашего АЦП остался один свободный вход, поэтому на него можно еще подать сигнал от датчика ветра. Но поскольку мы находимся в городе - установить и протестировать такой датчик нам попросту негде. В городской застройке не будет адекватного измерения скорости и направления ветра. Способы самостоятельного изготовления датчика скорости ветра подробно описаны многими энтузиастами в сети. Заводской датчик стоит довольно дорого.

Собрать такую метеостанцию под силам радиолюбителю со средними навыками. Для еще большего упрощения можно не разводить печатную плату, а собрать навесным монтажом на макетной плате. Проверено - работает.

Мы попытались создать именно доступную, дешевую метеостанцию. В частности для этого в системе задействован компьютер. Если его исключить, то нужно делать еще блок индикации, блок передачи данных в сеть и т.д, что существенно прибавит в цене. Например, сейчас популярная "Netatmo Weather Station" с подобными измеряемыми параметрами стоит около 4000 грн (200$).

Всем желающим сделать себе такую метеостанцию готовы помочь консультациями. Также предоставим необходимое программное обеспечение и подключим вашу станцию к нашему сайту.