Принцип работы и подключения реле таймера задержки времени. Схемы реле времени и задержки выключения нагрузки Реле задержки 220в

Реле задержки времени предназначено для регулировки последовательности работы определённых элементов электрической схемы. В основном такие устройства используются в приборах, где требуется автоматическое выполнение определённого действия через установленный промежуток времени.

Общая информация об устройстве

Реле – это устройство, которое работает по принципу аккумулятора . По продолжительности рабочего механизма могут быть суточные, недельные, часовые. Устанавливают эти приборы там, где нужен контроль цепей, которые обладают небольшими мощностями. При этом происходит полная изоляция между контрольным и управляемыми проводниками. Реле направлено контролировать одновременно несколько схем, при помощи одного сигнала.

Изначально, реле применялись в междугородных телефонных цепях. Они выполняли функцию усилителя : дублировали сигнал от одного контура к другому и передавали его цепной реакцией. Реле работало в первых компьютерах, выполняло простые команды в логических цепях.

Для чего в реле используется электромагнитное поле ? Оно является амортизатором, который замедляет или полностью обесточивает движение, при резком попадании катушки в среду напряжения. Именно это свойство даёт возможность реле задерживать время: замедляется время подключения якоря к катушке напряжения.

Несколько вариантов таких устройств

Использование реле времени даёт возможность экономить на потреблении электроэнергии, так как свет будет включаться и выключаться автоматически, через установленный промежуток времени.

Как работает реле задержки времени

Благодаря тому, что электрический ток при помощи проводников создаёт магнитное поле, текущее состояние реле реагирует индукторами на все изменения. Местонахождения магнитного поля будет зависеть от формы проводника. Если он сделан под прямым углом, то и поле будет располагаться так же, если в форме катушки, то магнитное поле будет располагаться вдоль всей её длины. Сила магнитного поля напрямую зависит от напряжения тока.

Реле стали популярными, потому что доказали всю эффективность при использовании. Они могут контролировать большие и маленькие напряжения. Катушка реле способна пропускать через себя доли ватт, в то время как контакты проводят сотни ватт энергии нагрузки.

Принцип действия реле напоминает бинарный усилитель включения и выключения. Как показывает практика, одна катушка реле может приводить в действие несколько контактов одного прибора. Это могут быть контакты любой комбинации. Устройство работает с контактами любого вида: ртутными, металлическими, магнитными тростниками.

Из чего состоит реле задержки?

Если устройство представляет собой простое двухканальное электромагнитное реле, то в него входят:

Якорь крепится с помощью шарниров с ярмом и механически связывается и одним или несколькими наборами контактов. Сам якорь удерживает пружина. Она установлена таким образом, чтобы во время отсутствия тока, в магнитной цепи образовывался воздушный зазор . В таком режиме устройства, один из контактов находится в закрытом положении, другой – в открытом. Некоторые из видов устройств имеют большее количество контактов, все зависит от предусмотренных функций.

При поступлении электрического тока, происходит генерация магнитного поля, что позволяет активизировать арматуру с последующим перемещением подвижного контакта. Это позволяет делать разрыва или соединения с неподвижными контактами. При открытых контактах происходит соединение и смыкание контактов, при выключении действия противоположные. При выключенном токе якорь занимает своё первоначальное положение и возвращается под действие силы, которая в несколько раз меньше магнитной, поэтому его положение нормально-расслабленное. Чаще всего эту силу обеспечивает пружина, гравитация применяется только в промышленных установках.

Когда происходит подача тока на катушку, диод проходит через неё и рассеивает энергию из распадающегося магнитного поля при дезактивации . Если этот процесс не запустится, то компоненты схемы получат энергетический всплеск, что повлечёт их выход из строя.

Реле задержки своими руками

Для создания реле с задержкой выключения в 220 В не нужно особых электромеханических знаний, достаточно будет владеть базовыми познаниями в физике и электромеханике. Существует определённое руководство , которое поможет собрать реле самостоятельно.

Для реле времени оптимальным считается использование схем на транзисторе . Такие реле отлично подходят для контроля работы дворников на машине, включения и выключения света на улице, работы стиральной машины . Задержка включения реле 220В - отличный вариант, сочетающий в себе бытовые удобства и великолепную экономию.


Приветствую! Представляю вам несколько схем реле времени и задержки выключения нагрузки. Нагрузкой может быть как лампочка так и телевизор. Фантазию включать вам.
Вот эта схема нужна для выключения чего либо через определенный интервал времени.

Рис.1. Схема таймера для автоматического отключения нагрузки .
При указанных на схеме номиналах времязадающих элементов задержка отключения составит около 40 мин (для микромощных таймеров это время может быть значительно увеличено, так как они позволяют R2 установить с большим номиналом).
В ждущем режиме устройство не потребляет энергии, так как при этом транзисторы VT1 и VT2 заперты. Включение производится кнопкой SB1 - при ее нажатии открывается транзистор VT2 и подает питание на микросхему. На выходе 3 таймера при этом появляется напряжение, которое открывает транзисторный ключ VT1 и подает напряжение в нагрузку, например на лампу BL1. Кнопка блокируется, и схема будет находиться в таком состоянии, пока заряжается конденсатор С2, после чего отключит нагрузку. Резистор R3 ограничивает ток разряда емкости времязадающего конденсатора, что повышает надежность работы устройства. Для получения больших интервалов задержки конденсатор С2 необходимо применять с малым током утечки, например танталовый из серии К52-18.
Следующая схема для отключения нагрузки через 5-30 минут с шагом в 5 минут нажатием кнопки SA1.
Благодаря использованию микромощного таймера, обладающего большим входным сопротивлением, имеется возможность использовать времязадающие резисторы значительно больших номиналов (от 8,2 до 49,2 МОм), что позволяет увеличить и временной интервал: Т= 1,1 * С2 * (R1 + ... + Rn).

Рис.2. Схема таймера с увеличенным временным интервалом для отключения нагрузки
Схемы, позволяющие непосредственно (без реле) управлять отключением сетевой нагрузки, приведены на рис.3 и 4. В них в качестве коммутатора использован симистор. По сравнению с оригиналом, в приведенных здесь вариантах некоторые номиналы изменены для работы устройств от сетевого напряжения 220 В.
В схеме на рис.3 включение нагрузки происходит сразу при замыкании контактов SA1, а выключение с задержкой, определяемой номиналами R2-C2 (для указанных на схеме она составляет 11 с). Цепь R1-C1 обеспечивает запуск одновибратора при включении.

Рис.3. Бестрансформаторная схема управления сетевой нагрузкой

Рис.4. Схема для автоматического отключения сетевой нагрузки

Во второй схеме (рис.4) включение нагрузки будет при первоначальном подключении к сети или при нажатии на кнопку SB1. Для питания микросхемы использовано реактивное сопротивление, которым является конденсатор С1 (он не греется, что лучше по сравнению с гасящим напряжение активным сопротивлением, как это сделано в предыдущей схеме). Стабилитрон VD1 обеспечивает стабильное напряжение питания микросхемы, а диод VD3 позволяет уменьшить время готовности схемы для частого нажатия на кнопку. Время задержки выключения может регулироваться резистором R3 от 0 до 8,5 мин. Времязадающий конденсатор СЗ обязательно должен иметь маленькую утечку.

Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Для управления последовательностью работы электрических приборов используется реле времени с задержкой выключения 220 В. После включения электрического аппарата через заданное время происходит отключение нагрузки. Таким образом регулируется последовательность работы элементов электрической цепи и производится управление электроприборами и технологическими процессами.

Типы реле

Все реле подразделяются на устройства с гальванической развязкой и без гальванической развязки. Под гальванической развязкой понимается электрическая изоляция цепей по отношению к другим цепям, находящимся рядом. Имеется полная изоляция между контролирующей цепью и управляемыми цепями.

На практике применяются следующие устройства:

Электронные таймеры обладают большой точностью, но интервал задержки у них значительно меньше, чем у электромагнитных, и они требуют программирования. Электромагнитные устройства имеют меньшую стоимость, их проще настраивать. Они не требуют обслуживания, но ресурс работы у них ограничен.

Реле времени можно разделить на встроенные в технику и отдельно приобретаемые . В мультиварках, стиральных и посудомоечных машинах таймеры запрограммированы, на их работу повлиять нельзя. Самостоятельно можно применить отдельные таймеры, управляющие освещением, отоплением, открыванием дверей. Самыми распространёнными считаются цифровые таймеры, в основе которых лежит кварцевый резонатор со стабильной частотой.

Замена человеческого труда при управлении различными механическими устройствами, увеличение производительности устройств без участия человека, повышение безопасности производства - эти задачи способны выполнять реле времени.

Характеристики установок

По характеристикам определяется возможность использования приборов в тех или иных рабочих условиях. Свойства установок задержки времени имеют четыре направления:

Каждый таймер характеризуется определёнными параметрами. Важным является алгоритм работы, а именно последовательность включений и отключений.

Наиболее часто используемые алгоритмы:

  • Задержка включения - после подачи электропитания на таймер выходной импульс образуется после отсчёта установленного времени.
  • Импульс формируется при включении - сигнал появляется в момент включения электропитания таймера и исчезает после окончания установленного времени.
  • После включения электропитания таймера выходной сигнал появляется в момент снятия управляющего сигнала и исчезает через установленное время.
  • Задержка выключения после отключения электропитания - выходной сигнал появляется в момент включения питания таймера и исчезает через установленное время после отключения.
  • Циклический режим - после включения электропитания таймера время импульса чередуется со временем паузы и так до отключения электропитания.

Для того чтобы подключить таймер, необходимо знать, в какой сети он будет монтироваться - однофазной или трехфазной . Важно учитывать, что будет коммутировать этот таймер, какую нагрузку нужно отключать или включать. Используя эти данные, можно подобрать устройство с необходимыми характеристиками.

Содержание:

Как в быту, так и на производстве существует потребность в отключении потребителей электроэнергии через заданный промежуток времени. Чтобы разорвать электрическую цепь, нужен либо контакт, либо управляемый полупроводниковый прибор. А для формирования заданного отрезка времени потребуется либо секундомер, либо таймер. Все зависит от того, в каком направлении ведется временной отсчет.

Секундомер прибавляет секунды, а таймер отнимает. Разница только в этом. Но интервал времени, если он задан, одинаков для обоих. А контакт или полупроводниковый прибор для коммутации является частью реле – электромеханического или полупроводникового. Если совместить реле с таймером или секундомером, получим реле времени (РВ). Далее об этом устройстве более подробно.

Назначение РВ

Разновидностей РВ существует очень много. Можно использовать один и тот же таймер или секундомер для большого числа коммутаторов различной мощности. И наоборот. Одна и та же система коммутации может быть совмещена с широким спектром моделей таймеров и секундомеров. И то и другое можно увидеть на рынке сегодня. Многие модели реле времени весьма схожи не только внешне, но и по техническому описанию.

Если у читателя возникнет интерес к тому, чтобы наглядно ознакомиться с работой РВ, далеко ходить не надо. Все стиральные машинках, выпускаемые с 60-х годов ХХ века, снабжены реле времени с механическим таймером. Поворотом специального переключателя в этих машинках задавался определенный интервал, и механизм, аналогичный часовому, начинал тикать, отсчитывая секунды. А поворотный переключатель, подобно часовой стрелке, двигался обратно к исходному положению.

В современных электробытовых приборах, которые применяются для приготовления пищи, реле времени также является центральным элементом автоматизации. Это сразу заметно по табло или поворотному переключателю, как в стиральной машине. В целом существует несколько вариантов принципиального построения реле времени. Все они используют те или иные известные науке принципы формирования временного интервала. Рассмотрим некоторые из них.

Базовые варианты

  • Электронный цифровой. РВ этой системы наиболее современные и точные. В них работает генератор, частота которого стабилизирована специальным приспособлением. Наиболее широко применяется для этого кристалл кварца. Скорее всего, читателю уже встречалось название «кварцевый генератор». Он выдает напряжение с постоянной частотой и нечувствителен к изменениям температуры окружающей среды. Вырабатываемый генератором сигнал используется для формирования стабильных импульсов. Они подсчитываются специальными микросхемами. На основании этого формируется сигнал, управляющий коммутатором РВ. Таким способом можно наиболее точно сформировать временной интервал любой длительности.
  • Электронный аналоговый. Основан на так называемой постоянной времени RC-цепи. Она определяется тем, что для полного заряда (разряда) конденсатора через резистор требуется тем больше времени, чем больше сопротивление резистора. На этом принципе можно создавать достаточно точные и простые по конструкции РВ. Временные интервалы у них получатся в пределах единиц секунд.
  • Электромагнитный, или индукционный. Это два определения одного и того же принципа работы. Он основан на том, что электромагнитное поле не может появляться и исчезать мгновенно. В зависимости от величины индуктивности элемента и специальной конструкции сердечников получается переходный процесс длительностью от сотых долей до нескольких секунд. Проверенная временем система, используемая до сих пор в специальных РВ.

  • Пневматический механизм. Его давно применяют в промышленном оборудовании. Он хорошо решает задачу синхронной работы большого числа исполнительных элементов. Система легко и наглядно настраивается изменением диаметра отверстия для движения воздуха. Чем больше его размеры, тем быстрее поток воздуха заполнит рабочий объем (например, цилиндр с поршнем) этого пневматического механизма и, соответственно, тем меньше интервал времени срабатывания такого РВ. И наоборот. Временной интервал у таких реле – в пределах единиц минут.

  • Часовой механизм. Его еще называют анкерным. Это самый распространенный из всех вариантов формирователей временного интервала. Он основан на деформации пружины. Ее напрягают при запуске механизма, и упругая сила возврата в исходное состояние, замедленная шестернями и маховиками, обеспечивает тот или иной временной интервал. В конце концов сила пружины перемещает исполнительный контакт, который либо непосредственно разрывает электрическую цепь, либо управляет реле. По работе стиральной машины можно судить, какое время можно задать для такого РВ.

  • Электромеханическая конструкция. Работает на основе многополюсного синхронного двигателя. Скорость вращения этого двигателя зависит только от частоты питающего напряжения. Если оно обеспечивается промышленной сетью 220 В, частота получается весьма стабильной. Залогом этой стабильности является масса роторов генераторов на электростанциях. Можно сформировать временной интервал продолжительностью в несколько часов. Имеют промышленное применение в основном в схемах релейной защиты. Можно задать любой временной интервал при отсутствии сбоев в электроснабжении.

Пара схем для умельцев

Если потребуется своими руками сделать реле времени с задержкой выключения 220 В, лучше всего остановиться на техническом решении с использованием электромеханического реле. Это классическое реле обеспечивает гальваническую развязку контактов. А испортить его в ходе, так сказать, опытно-конструкторских работ будет сложнее в сравнении с другими моделями. С гальванической развязкой контактов существуют и другие конструктивные разновидности реле – герконы и оптоэлектронные приборы.

Но чтобы надежно отключать токи нагрузки при напряжении сети 220 В реле лучше не использовать. Хотя бы потому, что механические контакты искрят и по этой причине изнашиваются. Поэтому по мере увеличения напряжения и силы тока, которые надо отключать, размеры контактов и самих реле существенно увеличиваются. Симметричный тиристор справится с этой задачей намного лучше. А электромеханическое реле, геркон или оптоэлектронную полупроводниковую сборку целесообразнее использовать для управления симистором.

Реле времени, вероятнее всего, будет использоваться для управления освещением. Это непродолжительный интервал времени. Поэтому для его формирования не имеет смысла применять сложную схему. Для управления любой лампой, применяемой для освещения в домашних условиях, вполне достаточен широко используемый симистор КУ208Г. Идея конструкции такого реле времени с выдержкой выключения 220 В состоит в том, чтобы заменить им выключатель освещения.

Это может пригодиться, например, для того, чтобы включив освещение в коридоре перед входом в подъезд или квартиру, достать ключи и открыть входную дверь. И не думать после этого о том, что свет необходимо выключить. Если использовать наружный выключатель частного дома или подъезда многоквартирного, в сырую погоду это может быть небезопасно. Да и подрастающее поколение может пошалить, постоянно включая свет ради забавы. Или уходя из гаража и закрывая его в темное время суток, лучше выходить на освещенное пространство перед ним, а не в темноту. С наружным выключателем та же ситуация.

Идея схемы основана на создании зарядного тока конденсатора, который одновременно управляет симистором. Пока конденсатор заряжается, симистор открыт и ток через нагрузку (лампу) течет. После того как сила зарядного тока уменьшится и выйдет за пределы порога удержания включенного состояния симистора, этот полупроводниковый ключ разорвет цепь с нагрузкой, и лампа погаснет. Включение схемы осуществляется кнопкой, которая разряжает конденсатор и одновременно включает симистор.

Величина R1 не должна быть менее 500 Ом

В этой схеме используются две одинаковые лампы 127 В и два одинаковых выпрямительных диода с номинальным током 250 мА. Мощность лампы можно выбирать в пределах 25–500 Вт. Две лампы создают условия для того, чтобы управляющий ток одного знака был одинаков при каждом полупериоде. При этом симистор будет работать симметрично на положительной и отрицательной полуволнах. Но можно использовать и одну лампу 220 В в этой схеме.

Величина R1 не должна быть менее 2 кОм

Однако с ней симистор не будет одинаково пропускать обе полуволны тока, и лампа не выдаст номинальный световой поток. Для полноценной работы одной лампы нужна иная схема (см. далее). Для S1 рекомендуем применить кнопку от входного звонка. C1 и R1 по мере увеличения своих номиналов продлевают свечение ламп.

Для обеспечения точных промежутков времени при выполнении различных действий с помощью электрооборудования применяются реле времени.

Они повсюду применяются в быту: электронный будильник, изменение режимов работы стиральной машины, микроволновой печи, вытяжные вентиляторы в туалете и ванной комнате, автоматический полив растений и т. п.

Достоинства таймеров

Из всех разновидностей наиболее распространены электронные устройства. Их преимущества:

  • малые размеры;
  • исключительно малые энергозатраты;
  • отсутствие подвижных частей за исключением механизма электромагнитного реле;
  • широкий диапазон временных выдержек;
  • независимость срока службы от количества рабочих циклов.

Реле времени на транзисторах

Обладая элементарными навыками электрика, можно изготовить электронное реле времени своими руками. Его монтируют в пластиковом корпусе, где размещаются блок питания, реле, плата и элементы регулирования.

Простейший таймер

Реле времени (схема ниже) производит подключение нагрузки к питанию на время 1-60 сек. Транзисторный ключ управляет электронным реле К1, который подключает потребитель к сети контактом К1.1.

В исходном состоянии переключатель S1 замыкает конденсатор С1 на сопротивление R2, который поддерживает его разряженным. Электромагнитный переключатель К1 при этом не работает, поскольку транзистор заперт. При подключении конденсатора к питающей сети (верхнее положение контакта S1) начинается его зарядка. Через базу протекает ток, который открывает транзистор и включается К1, замыкая цепь нагрузки. Напряжение питания на реле времени - 12 вольт.

В процессе зарядки конденсатора базовый ток постепенно уменьшается. Соответственно падает величина коллекторного тока, пока К1 своим отключением не разомкнет цепь нагрузки контактом К1.1.

Чтобы снова подключить нагрузку к сети на заданный период работы, схему следует снова перезапустить. Для этого переключатель устанавливается в нижнее положение "выключено", что приводит к разрядке конденсатора. Затем устройство снова включается с помощью S1 в течение заданного временного промежутка. Задержка регулируется с помощью установки резистора R1, а также может быть изменена, если конденсатор заменить на другой.

Принцип действия реле с применением конденсатора основан на его зарядке в течение времени, зависящего от произведения емкости на величину сопротивления электрической цепи.

Схема таймера на двух транзисторах

Нетрудно собрать реле времени своими руками на двух транзисторах. Оно начинает работать, если подать питание на конденсатор С1, после чего начнется его зарядка. При этом ток базы открывает транзистор VT1. Вслед за ним откроется VT2, и электромагнит замыкает контакт, подавая питание на светодиод. По его свечению будет видно, что сработало реле времени. Схема обеспечивает переключение нагрузки R4.

По мере того как конденсатор заряжается, эмиттерный ток постепенно снижается, пока транзистор не закроется. В результате реле отключится, и светодиод прекратит работу.

Повторный запуск устройства происходит, если нажать кнопку SB1, а затем ее отпустить. При этом конденсатор разрядится и процесс повторится.

Работа начинается, когда на реле времени 12 В подается питание. Для этого могут применяться автономные источники. При питании от сети к таймеру подключается блок питания, состоящий из трансформатора, выпрямителя и стабилизатора.

Реле времени 220в

Большинство электронных схем работают на малом напряжении с гальванической развязкой от сети, но при этом могут коммутировать значительные нагрузки.

Временная задержка может производиться от реле времени 220В. Всем известны электромеханические устройства с задержкой выключения старых стиральных машин. Достаточно было повернуть ручку таймера, и устройство включало двигатель на заданное время.

На смену электромеханическим таймерам пришли электронные устройства, которые также применяются для временного освещения в туалете, на лестничной площадке, в фотоувеличителе и т. п. При этом часто используются бесконтактные переключатели на тиристорах, где схема работает от сети 220 В.

Питание производится через диодный мост с допустимым током 1 А и более. Когда контакт выключателя S1 замыкается, в процессе зарядки конденсатора С1 открывается тиристор VS1 и загорается лампа L1. Она служит нагрузкой. После полной зарядки тиристор закроется. Это будет видно по отключению лампы.

Время горения лампы составляет несколько секунд. Его можно менять, установив конденсатор С1 с другим номиналом или подключив к диоду D5 переменный резистор на 1 кОм.

Реле времени на микросхемах

Транзисторные схемы таймеров имеют много недостатков: сложность определения времени задержки, необходимость разрядки конденсатора перед следующим пуском, малые интервалы срабатывания. Микросхема NE555, получившая название "интегральный таймер", давно завоевала популярность. Ее применяют в промышленности, но можно увидеть множество схем, по которым делают реле времени своими руками.

Временная выдержка задается сопротивлениями R2, R4 и конденсатором С1. Контакт подключения нагрузки К1.1 замыкается при нажатии на кнопку SB1, а затем он самостоятельно размыкается после задержки, продолжительность которой определяется из формулы: t и = 1.1R2∙R4∙C1.

При повторном нажатии на кнопку процесс повторяется.

Во многих бытовых приборах применяются микросхемы с реле времени. Инструкция для пользования - это необходимый атрибут правильной эксплуатации. Она также составляется для таймеров, созданных своими руками. От этого зависит их надежность и долговечность.

Схема работает от простейшего блока питания на 12 В из трансформатора, диодного моста и конденсатора. Ток потребления составляет 50 мА, а реле коммутирует нагрузку до 10 А. Регулируемую задержку можно сделать от 3 до 150 с.

Заключение

В бытовых целях можно легко собрать реле времени своими руками. Электронные схемы хорошо работают на транзисторах и микросхемах. Можно установить бесконтактный таймер на тиристорах. Его можно включать без гальванической развязки от действующей сети.