Устройства с очень большим кпд схемы. Квазирезонансные преобразователи с высоким кпд. Стирлинг модификации «Бета»

Современное автомобилестроение вышло на такой уровень развития, при котором без фундаментальных научных исследований практически невозможно достигнуть кардинальных улучшений в конструкции традиционных моторов внутреннего сгорания. Такая ситуация вынуждает конструкторов обратить внимание на альтернативные проекты силовых установок . Одни инженерные центры сосредоточили свои силы на создании и адаптации к серийному выпуску гибридных и электрических моделей, другие автоконцерны вкладывают средства в разработку двигателей на топливе из возобновляемых источников (например, биодизель на рапсовом масле). Существуют и другие проекты силовых агрегатов, которые в перспективе могут стать новым стандартным движителем для транспортных средств.

Среди возможных источников механической энергии для автомобилей будущего следует назвать двигатель внешнего сгорания, который был изобретен в середине XIX века шотландцем Робертом Стирлингом в качестве тепловой расширительной машины.

Схема работы

Двигатель Стирлинга преобразует тепловую энергию, подводимую извне, в полезную механическую работу за счет изменения температуры рабочего тела (газа или жидкости), циркулирующего в замкнутом объеме.

В общем виде схема работы устройства выглядит следующим образом: в нижней части двигателя рабочее вещество (например, воздух) нагревается и, увеличиваясь в объеме, выталкивает поршень вверх. Горячий воздух проникает в верхнюю часть мотора, где охлаждается радиатором. Давление рабочего тела снижается, поршень опускается для следующего цикла. При этом система герметична и рабочее вещество не расходуется, а только перемещается внутри цилиндра.

Существует несколько вариантов конструкции силовых агрегатов, использующих принцип Стирлинга.

Стирлинг модификации «Альфа»

Двигатель состоит из двух раздельных силовых поршней (горячего и холодного), каждый из которых находится в своем цилиндре. К цилиндру с горячим поршнем подводится тепло, а холодный цилиндр расположен в охлаждающем теплообменнике.

Стирлинг модификации «Бета»

Цилиндр, в котором находится поршень, нагревается с одной стороны и охлаждается с противоположного конца. В цилиндре двигается силовой поршень и вытеснитель, предназначенный для изменения объема рабочего газа. Обратное перемещение остывшего рабочего вещества в горячую полость двигателя выполняет регенератор.

Стирлинг модификации «Гамма»

Конструкция состоит из двух цилиндров. Первый - полностью холодный, в котором движется силовой поршень, а второй, горячий с одной стороны и холодный с другой, служит для перемещения вытеснителя. Регенератор для циркуляции холодного газа может быть общим для обоих цилиндров или входить в конструкцию вытеснителя.

Преимущества двигателя Стирлинга

Как и большинство моторов внешнего сгорания, Стирлингу присуща многотопливность : двигатель работает от перепада температуры, независимо от причин его вызвавших.

Интересный факт! Однажды была продемонстрирована установка, которая функционировала на двадцати вариантах топлива. Без остановки двигателя во внешнюю камеру сгорания подавались бензин, дизельное топливо, метан, сырая нефть и растительное масло - силовой агрегат продолжал устойчиво работать.

Двигатель обладает простотой конструкции и не требует дополнительных систем и навесного оборудования (ГРМ, стартер, коробка передач).

Особенности устройства гарантируют длительный эксплуатационный ресурс: более ста тысяч часов непрерывной работы.

Двигатель Стирлинга бесшумен , так как в цилиндрах не происходит детонация и отсутствует необходимость вывода отработанных газов. Модификация «Бета», оснащенная ромбическим кривошипно-шатунным механизмом, является идеально сбалансированной системой, которая в процессе работы не имеет вибраций.

В цилиндрах двигателя не происходят процессы, которые могут оказать негативное воздействие на окружающую среду. При выборе подходящего источника тепла (например, солнечная энергия) Стирлинг может быть абсолютно экологически чистым силовым агрегатом.

Недостатки конструкции Стирлинга

При всем наборе положительных свойств немедленное массовое применение двигателей Стирлинга невозможно по следующим причинам:

Основная проблема заключается в материалоемкости конструкции. Охлаждение рабочего тела требует наличия радиаторов большого объема, что существенно увеличивает размеры и металлоемкость изготовления установки.

Нынешний технологический уровень позволит двигателю Стирлинга сравниться по характеристикам с современными бензиновыми моторами только за счет применения сложных видов рабочего тела (гелий или водород), находящихся под давлением более ста атмосфер. Этот факт вызывает серьезные вопросы как в области материаловедения, так и обеспечения безопасности пользователей.

Немаловажная эксплуатационная проблема связана с вопросами теплопроводности и температурной стойкости металлов. Тепло подводится к рабочему объему через теплообменники, что приводит к неизбежным потерям. Кроме того, теплообменник должен быть изготовлен из термостойких металлов, устойчивых к высокому давлению. Подходящие материалы очень дороги и сложны в обработке.

Принципы изменения режимов двигателя Стирлинга также кардинально отличаются от традиционных, что требует разработки специальных управляющих устройств. Так, для изменения мощности необходимо изменить давление в цилиндрах, угол фаз между вытеснителем и силовым поршнем или повлиять на емкость полости с рабочим телом.

Один из способов управления скоростью вращения вала на модели двигателя Стирлинга можно увидеть на следующем видео:

Коэффициент полезного действия

В теоретических расчетах эффективность двигателя Стирлинга зависит от разницы температур рабочего тела и может достигать 70% и более в соответствии с циклом Карно.

Однако первые реализованные в металле образцы обладали крайне невысоким КПД по следующим причинам:

  • неэффективные варианты теплоносителя (рабочего тела), ограничивающие максимальную температуру нагрева;
  • потери энергии на трение деталей и теплопроводность корпуса двигателя;
  • отсутствие конструкционных материалов, устойчивых к высокому давлению.

Инженерные решения постоянно совершенствовали устройство силового агрегата. Так, во второй половине XX века четырехцилиндровый автомобильный двигатель Стирлинга с ромбическим приводом показал на испытаниях КПД равный 35% на водном теплоносителе с температурой 55 °C.Тщательная проработка конструкции, применение новых материалов и доводка рабочих узлов обеспечили КПД экспериментальных образцов в 39%.

Примечание! Современные бензиновые двигатели аналогичной мощности обладают коэффициентом полезного действия на уровне 28-30%, а турбированные дизели в пределах 32-35%.

Современные образцы двигателя Стирлинга, такие как созданный американской компанией Mechanical Technology Inc, демонстрируют эффективность до 43,5%. А с освоением выпуска жаропрочной керамики и аналогичных инновационных материалов появится возможность значительного повышения температуры рабочей среды и достижения КПД в 60%.

Примеры успешной реализации автомобильных Стирлингов

Несмотря на все сложности, известно немало работоспособных моделей двигателя Стирлинга, применимых для автомобилестроения.

Заинтересованность в Стирлинге, подходящем для установки в автомобиль, появилась в 50-е годы XX века. Работу в данном направлении вели такие концерны, как Ford Motor Company, Volkswagen Group и другие.

Компания UNITED STIRLING (Швеция) разработала Стирлинг, в котором максимально использовались серийные узлы и агрегаты, выпускаемые автопроизводителями (коленчатый вал, шатуны). Получившийся в результате четырехцилиндровый V-образный мотор обладал удельной массой 2,4 кг/кВт, что сравнимо с характеристиками компактного дизеля. Данный агрегат был успешно опробован в качестве силовой установки семитонного грузового фургона.

Одним из успешных образцов является четырехцилиндровый двигатель Стирлинга нидерландского производства модели «Philips 4-125DA», предназначавшийся для установки на легковой автомобиль. Мотор имел рабочую мощность 173 л. с. в размерах, аналогичных классическому бензиновому агрегату.

Значительных результатов добились инженеры компании General Motors, построив в 70-х годах восьмицилиндровый (4 рабочих и 4 компрессионных цилиндра) V-образный двигатель Стирлинга со стандартным кривошипно-шатунным механизмом.

Аналогичной силовой установкой в1972 году оснащалась ограниченная серия автомобилей Ford Torino , расход топлива у которой снизился на 25% по сравнению с классической бензиновой V-образной восьмеркой.

В настоящее время более полусотни зарубежных компаний ведут работы по совершенствованию конструкции двигателя Стирлинга в целях его адаптации к массовому выпуску для нужд автомобилестроения. И если удастся устранить недостатки данного типа двигателей, в то же время сохранив его преимущества, то именно Стирлинг, а не турбины и электромоторы, придет на смену бензиновым ДВС.

Жук собран по схеме Хартли с нестандартным включением обратной связи, благодаря чему имеет КПД на 10-20% выше аналогичных схем. Эта схема аналогична примененной в простейшем телефонном жуке. Она давно ходит по инету, и владельцы сайтов продолжают копировать ее друг у друга, не замечая грубейшую ошибку в схеме. Здесь эта ошибка исправлена.

R1=R3=R4 - 9.1 к,
R2 - 300 к,
С1 - 0.1 мкф,
С2 - 56, С3 - 24,
VT1 - КТ315,
VT2 - КТ325ВМ,
L1 - 5+5 витков
провода ПЭВ-0.5
на оправке 3мм.

Как правило, схема начинает работать сразу после сборки. Если в приемнике слышен писк, следует зашунтировать схему конденсатором емкостью не менее 1 мкФ. Антенну лучше подключить через кондер емкостью 1-2 пф. У меня при длине антенны 20см дальность была 140м.

Фотографии готового девайса в варианте с питанием от 2-х литиевых таблеток CR-1220 (6v). (работают очень долго):

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ315А

1 В блокнот
VT2 Транзистор КТ325ВМ 1 В блокнот
С1 Конденсатор 0.1 мкФ 1 В блокнот
С2 Конденсатор 56 пФ 1 В блокнот
С3 Конденсатор 24 пФ 1 В блокнот
Конденсатор 1-2 пФ 1 Для подключения антенны В блокнот
Конденсатор Не менее 1мкФ 1 Для шунтирования схемы В блокнот
R1, R3, R4 Резистор

9.1 кОм

3 В блокнот
R2 Резистор

300 кОм

1 В блокнот
L1 Катушка индуктивности 1

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

Сегодня мы рассмотрим несколько схем несложных, даже можно сказать - простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного. Импульсные преобразователи подразделяются на группы:

  • - понижающие, повышающие, инвертирующие;
  • - стабилизированные, нестабилизированные;
  • - гальванически изолированные, неизолированные;
  • - с узким и широким диапазоном входных напряжений.

Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы - они проще в сборке и не капризны при настройке. Итак, приводим для ознакомления 14 схем на любой вкус:

Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка - 2х10 витков, вторичная обмотка - 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.


Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Преобразователь стабилизирующего типа на микросхеме MAX631 фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент - дроссель L1.


Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Типовая схема включения импульсного повышающего стабилизатора на микросхеме MAX1674 фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД - 94%, ток нагрузки - до 200 мА.

Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 - накопители энергии.

8. Импульсный повышающий стабилизатор на микросхеме MAX1724EZK33 фирмы MAXIM

Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД - 90%.

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

Интегральный инвертор напряжения, КПД - 98%.

Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Индуктивность первичной обмотки трансформатора Т1 - 22 мкГн, отношение витков первичной обмотки к каждой вторичной - 1:2.5.

Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.

Описываемое устройство обеспечивает исключительно высокий КПД преобразования, допускает регулирование выходного напряжения и его стабилизацию, устойчиво работает при вариации мощности нагрузки. Интересен и незаслуженно мало распространен этот вид преобразователей — квазирезонансный, который в значительной мере избавлен от недостатков других популярных схем. Идея создания такого преобразователя не нова, но практическая реализация стала целесообразной сравнительно недавно, после появления мощных высоковольтных транзисторов, допускающих значительный импульсный ток коллектора при напряжении насыщения около 1,5 В. Главная отличительная особенность и основное преимущество этого вида источника питания — высокий КПД преобразователя напряжения, достигающий 97...98% без учета потерь на выпрямителе вторичной цепи, которые, в основном, определяет ток нагрузки.

От обычного импульсного преобразователя, у которого к моменту закрывания переключательных транзисторов ток, протекающий через них, максимален, квазирезонансный отличается тем, что к моменту закрывания транзисторов их коллекторный ток близок к нулю. Причем уменьшение тока к моменту закрывания обеспечивают реактивные элементы устройства. От резонансного он отличается тем, что частота преобразования не определяется резонансной частотой коллекторной нагрузки. Благодаря этому можно регулировать выходное напряжение изменением частоты преобразования и реализовывать стабилизацию этого напряжения. Поскольку к моменту закрывания транзистора реактивные элементы снижают до минимума ток коллектора, базовый ток также будет минимальным и, следовательно, время закрывания транзистора уменьшается до значения времени его открывания. Таким образом, полностью снимается проблема сквозного тока, возникающего при переключении. На рис. 4.22 показана принципиальная схема автогенераторного нестабилизированного блока питания.

Основные технические характеристики:

Общий КПД блока, %..................................................................92;

Напряжение на выходе, В, при сопротивлении нагрузки 8 Ом....... 18;

Рабочая частота преобразователя, кГц.........................................20;

Максимальная выходная мощность, Вт...........................................55;

Максимальная амплитуда пульсации выходного напряжения с рабочей частотой, В

Основная доля потерь мощности в блоке падает на нагревание" выпрямительных диодов вторичной цепи, а КПД самого преобразователя таков, что нет необходимости в теплоотводах для транзисторов. Мощность потерь на каждом из них не превышает 0,4 Вт. Специального отбора транзисторов по каким-либо параметрам также не требуется. При замыкании выхода или превышении максимальной выходной мощности генерация срывается, защищая транзисторы от перегревания и пробоя.

Фильтр, состоящий из конденсаторов С1...СЗ и дросселя LI, L2, предназначен для защиты питающей сети от высокочастотных помех со стороны преобразователя. Запуск автогенератора обеспечивает цепь R4, С6 и конденсатор С5. Генерация колебаний происходит в результате действия положительной ОС через трансформатор Т1, а частоту их определяют индуктивность первичной обмотки этого трансформатора и сопротивление резистора R3 (при увеличении сопротивления частота увеличивается).

Дроссели LI, L2 и трансформатор Т1 наматывают на одинаковых кольцевых магнитопроводах К12х8хЗ из феррита 2000НМ. Обмотки дросселя выполняют одновременно, «в два провода», проводом ПЭЛШО-0,25; число витков — 20. Обмотка I трансформатора TI содержит 200 витков провода ПЭВ-2-0,1, намотанных внавал, равномерно по всему кольцу. Обмотки II и III намотаны «в два провода» — 4 витка провода ПЭЛШО-0,25; обмотка IV представляет собой виток такого же провода. Для трансформатора Т2 использован кольцевой магнитопровод К28х16х9 из феррита 3000НН. Обмотка I содержит 130 витков провода ПЭЛИ10-0,25, уложенных виток к витку. Обмотки II и III — по 25 витков провода ПЭЛШО-0,56; намотка — «в два провода», равномерно по кольцу.

Дроссель L3 содержит 20 витков провода ПЭЛИ10-0,25, намотанных на двух, сложенных вместе кольцевых магнитопроводах К12х8хЗ из феррита 2000НМ. Диоды VD7, VD8 необходимо установить на теплоотводы площадью рассеяния не менее 2 см2 каждый.

Описанное устройство было разработано для использования совместно с аналоговыми стабилизаторами на различные значения напряжения, поэтому потребности в глубоком подавлении пульсаций на выходе блока не возникало. Пульсации можно уменьшить до необходимого уровня, воспользовавшись обычными в таких случаях LC-фильтрами, как, например, в другом варианте этого преобразователя с такими основными техническими характеристиками:

Номинальное выходное напряжение, В.............................................5,

Максимальный выходной ток, А...................................................... 2;

Максимальная амплитуда пульсации, мВ........................................50;

Изменение выходного напряжения, мВ, не более, при изменении тока нагрузки

от 0,5 до 2 А и напряжения сети от 190 до 250 В........................150;

Максимальная частота преобразования, кГц.................................. 20.

Схема стабилизированного блока питания на основе квазирезо-нансного преобразователя представлена на рис. 4.23.

Выходное напряжение стабилизируется соответствующим изменением рабочей частоты преобразователя. Как и в предыдущем блоке, мощные транзисторы VT1 и VT2 в теплоотводах не нуждаются. Симметричное управление этими транзисторами реализовано с помощью отдельного задающего генератора импульсов, собранного на микросхеме DDI. Триггер DD1.1 работает в собственно генераторе.

Импульсы имеют постоянную длительность, заданную цепью R7, С12. Период же изменяется цепью ОС, в которую входит оптрон U1, так что напряжение на выходе блока поддерживается постоянным. Минимальный период задает цепь R8, С13. Триггер DDI.2 делит частоту следования этих импульсов на два, и напряжение формы «меандр» подается с прямого выхода на транзисторный усилитель тока VT4, VT5. Далее усиленные по току управляющие импульсы дифференцирует цепь R2, С7, а затем, уже укороченные до длительности примерно 1 мкс, они поступают через трансформатор Т1 в базовую цепь транзисторов VT1, VT2 преобразователя. Эти короткие импульсы служат лишь для переключения транзисторов — закрывания одного из них и открывания другого.

Кроме того, основная мощность от генератора возбуждения потребляется только в моменты переключения мощных транзисторов, поэтому средний ток, потребляемый им, мал и не превышает 3 мА с учетом тока стабилитрона VD5. Это и позволяет питать его прямо от первичной сети через гасящий резистор R1. Транзистор VT3 является усилителем напряжения сигнала управления, как в компенсационном стабилизаторе. Коэффициент стабилизации выходного напряжения блока прямо пропорционален статическому коэффициенту передачи тока этого транзистора.

Применение транзисторного оптрона U1 обеспечивает надежную гальваническую развязку вторичной цепи от сети и высокую помехозащищенность по входу управления задающего генератора. После очередного переключения транзисторов VT1, VT2 начинает подзаряжаться конденсатор СЮ и напряжение на базе транзистора VT3 начинает увеличиваться, коллекторный ток тоже увеличивается. В результате открывается транзистор оптрона, поддерживая в разряженном состоянии конденсатор С13 задающего генератора. После закрывания выпрямительных диодов VD8, VD9 конденсатор СЮ начинает разряжаться на нагрузку и напряжение на нем падает. Транзистор VT3 закрывается, в результате чего начинается зарядка конденсатора С13 через резистор R8. Как только конденсатор зарядится до напряжения переключения триггера DD1.1, на его прямом выходе установится высокий уровень напряжения. В этот момент происходит очередное переключение транзисторов VT1, VT2, а также разрядка конденсатора СИ через открывшийся транзистор оптрона.

Начинается очередной процесс подзарядки конденсатора СЮ, а триггер DD1.1 через 3...4 мкс снова вернется в нулевое состояние благодаря малой постоянной времени цепи R7, С12, после чего весь цикл управления повторяется, независимо от того, какой из транзисторов — VT1 или VT2 — открыт в текущий полу период. При включении источника, в начальный момент, когда конденсатор СЮ полностью разряжен, тока через светодиод оптрона нет, частота генерации максимальна и определена в основном постоянной времени цепи R8, С13 (постоянная времени цепи R7, С12 в несколько раз меньше). При указанных на схеме номиналах этих элементов эта частота будет около 40 кГц, а после ее деления триггером DDI.2 — 20 кГц. После зарядки конденсатора СЮ до рабочего напряжения в работу вступает стабилизирующая петля ОС на элементах VD10, VT3, U1, после чего и частота преобразования уже будет зависеть от входного напряжения и тока нагрузки. Колебания напряжения на конденсаторе СЮ сглаживает фильтр L4, С9. Дроссели LI, L2 и L3 — такие же, как в предыдущем блоке.

Трансформатор Т1 выполнен на двух сложенных вместе кольцевых магнитопроводах К12x8x3 из феррита 2000НМ. Первичная обмотка намотана внавал равномерно по всему кольцу и содержит 320 витков провода ПЭВ-2-0,08. Обмотки II и III содержат по 40 витков провода ПЭЛ1110-0,15; их наматывают «в два провода». Обмотка IV состоит из 8 витков провода ПЭЛШО-0,25. Трансформатор Т2 выполнен на кольцевом магнитопроводе К28х16х9 из феррита 3000НН. Обмотка I — 120 витков провода ПЭЛШО-0,15, а II и III — по 6 витков провода ПЭЛ1110-0,56, намотанных «в два провода». Вместо провода ПЭЛШО можно использовать провод ПЭВ-2 соответствующего диаметра, но при этом между обмотками необходимо прокладывать два-три слоя лакоткани.

Дроссель L4 содержит 25 витков провода ПЭВ-2-0,56, намотанных на кольцевой магнитопровод К12х6х4,5 из феррита 100НН1. Подойдет также любой готовый дроссель индуктивностью 30...60 мкГн на ток насыщения не менее 3 А и рабочую частоту 20 кГц. Все постоянные резисторы — MJIT. Резистор R4 — подстроенный, любого типа. Конденсаторы С1...С4, С8 — К73-17, С5, С6, С9, СЮ - К50-24, остальные - КМ-6. Стабилитрон КС212К можно заменить на КС212Ж или КС512А. Диоды VD8, VD9 необходимо установить на радиаторы площадью рассеяния не менее 20 см2 каждый. КПД обоих блоков можно повысить, если вместо диодов КД213А использовать диоды Шоттки, например, любые из серии КД2997. В этом случае теплоотводы для диодов не потребуются.