Генераторы Свободной Энергии. Инструкции и схемы по изготовлению. Трансформатор тесла своими руками, простейшая схема Двигатель генератор тесла своими руками схемы

Никола Тесла – известный физик, который всю свою жизнь занимался электричеством. Он разработал множество установок и устройств, которые названы его именем. Одно из них – это генератор Тесла, в основе которого лежит эффект вылетающих стримеров, что очень красиво. Поэтому уважающий себя радиолюбитель обязательно должен один раз собрать этот прибор. Тем более это несложно. Итак, как собрать генератор Тесла своими руками (схема прибора и последовательность его сборки)?

Чтобы упростить поставленную задачу, надо разбить весь процесс на три этапа:

  1. Сборка вторичной обмотки, она высоковольтная.
  2. Сборка первичной обмотки (низковольтной).
  3. Сборка схемы управления.

Первый этап

В основе вторичной обмотки лежит цилиндр, вокруг которого и будет наматываться медный провод. Здесь важно, чтобы цилиндр был изготовлен из диэлектрического материала. Поэтому оптимальный вариант (он же самый простой) – это ПВХ труба. Если говорить о размерах, то 50 мм в диаметре и 30 см длиною – это то, что вам необходимо.

Теперь, что касается медного провода. Во-первых, его диаметр. Для нашего устройства подойдет провод диаметром 0,12 мм. Во-вторых, количество витков в обмотке. Рассчитать этот показатель точно практически невозможно, поэтому многие радиолюбители идут опытным путем. Но специалисты отмечают, что меньше 800 витков делать обмотку нельзя. Это связано с коэффициентом полезного действия прибора. Ниже 800 витков КПД резко снижается. В нашем случае берем количество витков – 1600.

Теперь третий показатель – это высота или длина намотки (все зависит от того, как расположить пластиковую трубу: вертикально или горизонтально). Здесь можно просто подсчитать, для этого количество витков умножается на диаметр провода. В нашем случае это будет выглядеть вот так:

1600х0,12=192 мм или 19 см.

После этого можно непосредственно переходить к сборке вторичной обмотки генератора Тесла. Процесс этот трудоемкий, требующий аккуратности и внимательности, так что пару дней вам придется на это затратить.

В первую очередь тонким сверлом в трубе делается отверстие. От него вдоль трубы отмеряется расстояние 19 см, где делается заметка, на которой делается еще одно отверстие сверлом. Теперь в первое отверстие вставляется медный провод, который изнутри трубы чем-нибудь закрепляется. К примеру, скотчем. Обратите внимание, что внутрь ПВХ трубы надо вставить приличный конец провода длиною не меньше 10 см.

Все готово, можно начинать наматывать провод на трубу снизу-вверх. Намотка должна производиться по часовой стрелке, витки должны ложиться аккуратно, плотно прижимаясь друг к другу. Никаких скруток и волн, все четко и ровно. Если вы устали или появились неотложные дела, то последний виток закрепить изолентой, чтобы он не сместился, и не сместились все остальные витки.

Как уже было сказано выше, весь процесс требует внимания и аккуратности. По сути, это 60% всей работы по сборке генераторной установки Тесла. Итак, последний виток уложен, теперь надо откусить провод с запасом в 10 см и вставить его конец во второе отверстие, где изнутри трубы закрепить скотчем.

Но это еще не все. Чтобы обмотка смогла выдержать механические нагрузки, чтобы между витками трансформатора не произошло пробоя, необходимо собранный прибор покрыть защитным изоляционным материалом. Кто-то для этих целей использует эпоксидную смолу, кто-то обычный паркетный лак и другие материалы. Здесь важно равномерно нанести защитное покрытие в несколько слоев (5-6). При этом последующий слой наносится на предыдущий только после полного его высыхания. Лучше всего защиту наносить губкой.

Второй этап

Переходим к изготовлению первичной обмотки генераторной установки Тесла. Для этого вам понадобится толстый изолированный провод из алюминия или из меди. Кстати, чем больше диаметр выбранного вами провода, тем лучше. Хотя есть определенные ограничения, поэтому провод сечением 10 мм² будет нормально.

Внимание! Диаметр первичной обмотки должен быть больше диаметра вторичной обмотки в два раза. Если у нас для вторичной обмотки генератора использовалась труба диаметром 50 мм, то для первичной потребуется 100 мм. В принципе, для этих целей можно использовать даже кастрюлю, потому что обмотка нам нужна будет в чистом виде без основы.

Что касается количества витков, то 5-6 штук будет в самый раз. А вот концы обмотки надо вывести вертикально вверх в одну сторону, при этом надо сделать так, чтобы оба конца находились на одном уровне. В принципе, все, первичная обмотка генератора Тесла своими руками (схема несложная) сделана.

Третий этап

Что можно сказать о схеме управления генератором Тесла. Существует множество вариантов: простых и сложных. Есть схемы, с помощью которых регулировку трансформатора надо проводить вручную, есть с автоматической настройкой. Любые схемы вы можете найти в свободном доступе в интернете, так что это не проблема.

В нашем случае была применена вот эта схема:

Разобраться в ней несложно, здесь были применены простые детали, которые наверняка есть у каждого радиолюбителя в наличии. Использовать можно новые и использованные элементы. Собирать блок управления можно на текстолитовой пластине размерами 20х20 см. Для защиты схемы можно сверху установить еще одну пластину, на которую, в свою очередь, монтируются обе обмотки.

Обратите внимание еще раз на схему управления генератором Тесла. Включать тумблеры SA2 и SA3 надо только после того, как генератор будет запущен и в верхней части катушки появится коронарный разряд. После этого можно включать оба тумблера, что приведет к увеличению мощности разряда. Если включение прибора провести с включенными тумблерами, то произойдет резкий бросок тока в цепь транзисторов. А этого лучше избегать.


И вот, наконец, дошли руки. После сборок мелких катушек решил замахнуться на новую схему, более серьезную и сложную в настройке и работе. Перейдем от слов к делу. Полная схема выглядит так:

Работает по принципу автогенератора. Прерыватель пинает драйвер UCC27425 и начинается процесс. Драйвер подает импульс на GDT (Gate Drive Transformator - дословно: трансформатор, управляющий затворами) с GDT идут 2 вторичные обмотки включенные в противофазе. Такое включение обеспечивает попеременное открытие транзисторов. Во время открытия транзистор прокачивает ток через себя и конденсатор 4,7 мкФ. В этот момент на катушке образуется разряд, и сигнал идет по ОС в драйвер. Драйвер меняет направление тока в GDT и транзисторы меняются (который был открытым - закрывается, а второй открывается). И этот процесс повторяется до тех пор, пока идет сигнал с прерывателя.

GDT лучше всего мотать на импортном кольце - Epcos N80. Обмотки мотаются в соотношении 1:1:1 или 1:2:2. В среднем порядка 7-8 витков, при желании можно рассчитать. Рассмотрим RD цепочку в затворах силовых транзисторов. Эта цепочка обеспечивает Dead Time (мертвое время). Это время когда оба транзистора закрыты. То есть один транзистор уже закрылся, а второй еще не успел открыться. Принцип такой: через резистор транзистор плавно открывается и через диод быстро разряжается. На осциллограмме выглядит примерно так:

Если не обеспечить dead time то может получиться так, что оба транзистора будут открыты и тогда обеспечен взрыв силовой.

Идем дальше. ОС (обратная связь) выполнена в данном случае в виде ТТ (трансформатора тока). ТТ наматывается на ферритовом кольце марки Epcos N80 не менее 50 витков. Через кольцо продергивается нижний конец вторичной обмотки, который заземляется. Таким образом высокий ток со вторичной обмотки превращается в достаточный потенциал на ТТ. Далее ток с ТТ идет на конденсатор (сглаживает помехи), диоды шоттки (пропускают только один полупериод) и светодиод (выполняет роль стабилитрона и визуализирует генерацию). Чтобы была генерация необходимо также соблюдать фразировку трансформатора. Если нет генерации или очень слабая - нужно просто перевернуть ТТ.

Рассмотрим отдельно прерыватель. С прерывателем конечно я попотел. Собрал штук 5 разных... Одни пучит от ВЧ тока, другие не работают как надо. Далее расскажу про все прерыватели, которые делал. Начну пожалуй с самого первого - на TL494 . Схема стандартная. Возможна независимая регулировка частоты и скважности. Схема ниже может генерировать от 0 до 800-900 Гц, если поставить вместо 1 мкФ конденсатор 4,7 мкФ. Скважность от 0 и до 50. То что нужно! Однако есть одно НО. Этот ШИМ контроллер очень чувствителен к ВЧ току и различным полям от катушки. В общем при подключении к катушке, прерыватель просто не работал, либо все по 0 либо CW режим. Экранирование частично помогло, но не решило проблему полностью.

Следущий прерыватель был собран на UC3843 очень часто встречается в ИИП, особенно АТХ, оттуда, собственно, его и взял. Схема тоже неплохая и не уступает TL494 по параметрам. Здесь возможна регулировка частоты от 0 до 1кГц и скважность от 0 до 100%. Меня это тоже устраивало. Но опять эти наводки с катушки все испортили. Здесь даже экранирование нисколько не помогло. Пришлось отказаться, хотя собрал добротно на плате...

Надумал вернуться к дубовым и надежным, но малофункциональным 555 . Решил начать с burst interrupter. Суть прерывателя заключается в том, что он прерывает сам себя. Одна микросхема (U1) задает частоту, другая (2) длительность, а третья (U3) время работы первых двух. Все бы ничего, если бы не маленькая длительность импульса с U2. Этот прерыватель заточен под DRSSTC и может работать с SSTC но мне это не понравилось- разряды тоненькие, но пушистые. Далее было несколько попыток увеличить длительность, но они не увенчались успехом.

Схемы генераторов на 555

Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит). NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е. чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Плюсы и минусы

Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.

Минусы : скважность нельзя увеличивать "бесконечно много", как например на UC3843 , она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно.

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 - цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового - UCC работает, как только опустилось ниже минимального - не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.


Перейдем от теории к практике

Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало... В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

Ну и несколько фоток с разрядом

Теперь вроде бы все.

Ещё несколько советов: не пытайтесь сразу воткнуть в сеть катушку, не факт что она сразу заработает. Постоянно следите за температурой силовой, при перегреве может бабахнуть. Не мотайте слишком высокочастотные вторички, транзисторы 50b60 могут работать максимум на 150 кГц по даташиту, на самом деле немного больше. Проверяйте прерыватели, от них зависит жизнь катушки. Найдите максимальную частоту и скважность, при которой температура силовой стабильная длительное время. Слишком большой тороид может тоже вывести из строя силовую.

Видео работы SSTC

P.S. Транзисторы силовые использовал IRGP50B60PD1PBF. Файлы проекта . Удачи, с вами был [)еНиС !

Обсудить статью ТЕСЛА ГЕНЕРАТОР

Генератор Тесла - это прекрасная альтернатива солнечным панелям. Основным его достоинством считаются простота сборки, небольшие затраты на изготовление и минимальное количество материалов. Понятно, что эта разновидность генератора будет производить меньше электричества, нежели солнечная панель, однако можно сделать сразу несколько и получить неплохое дополнение в виде бесплатной энергии.

Происхождение генератора Тесла

Знаменитый ученый Никола Тесла полагал, что наш мир полностью состоит из разных форм энергии, для получения и эксплуатации которой нужно собрать улавливающий прибор. Он успел разработать множество конструкций генераторов бестопливного типа. Один из его проектов можно реализовать своими руками в домашних условиях .

Принцип функционирования бестопливного генератора Тесла состоит в том, что он применяет энергию солнца как источник положительно заряженных электронов, а энергию земли как источник электронов с отрицательным потенциалом. В результате образуется разница потенциалов, с помощью которой и создается электроток.

Система состоит из пары электродов, один из которых улавливает энергетические источники, а второй применяется в качестве заземления. Роль накопителя в конструкции играет емкостный конденсатор или линий-ионный аккумулятор (более современные вариант).

Как уже было сказано, генератор Тесла требует минимум материалов. Для его создания нужно взять следующее:

  • провода;
  • фанерные или картонные листы;
  • фольга;
  • резистор;
  • емкостный конденсатор.

Процесс сборки генератора Тесла своими руками не очень сложный. Он состоит из нескольких этапов.

Устройство заземления

Для начала необходимо позаботиться о надежном и правильном заземлении. Если самодельное

оборудование будет эксплуатироваться в деревне или на даче, то для создания хорошего заземления нужно просто вбить поглубже металлический штырь в землю. Также можно подключить установку к конструкциям, которые уходят в почву на достаточную глубину.

Если генератор будет применяться в городской квартире, то тут для заземления можно воспользоваться газовыми или водопроводными трубами. Кроме того, можно подключиться и к электрическим розеткам, которые, в свою очередь, обладают заземлением.

Изготовление приемника электронов

Затем нужно сделать прибор, улавливающий положительные частицы, которые вырабатываются источником света. Подобным источником может выступать не только солнце, но и осветительное оборудование. Генератор Тесла может вырабатывать электричество даже от дневного света, причем и в пасмурную погоду.

Приемник включает в свою конструкцию кусок фольги, зафиксированный на листе картона или фанеры. Когда световые частицы будут попадать на фольгу, в ее структуре начнут формироваться токи. Объем получаемой энергии зависит от площади фольги. Для увеличения показателей мощности установки можно собрать сразу несколько приемников и обеспечить их параллельное соединение.

Подсоединение схемы устройства

На следующей стадии необходимо подключить контакты друг к другу. Это делать нужно через емкостный конденсатор. Если рассматривать электроконденсатор, то у него на корпусе есть обозначения полярностей. К «минусовому» контакту следует подсоединить заземление, а к «плюсовому» зафиксировать провод от фольги. После этого начнется зарядка конденсатора, с которого потом уже можно будет выделять электричество. В том случае, если мощность конденсатора окажется слишком высокой, то он может взорваться от чрезмерного количества энергии. Для того чтобы предотвратить проблемы, электроцепь дополняют специальным ограничительным резистором.

Если говорить о классическом конденсаторе из керамики, то в этом случае полярность не имеет никакого значения.

Кроме того, можно попытаться устроить систему не с помощью конденсатора, а с помощью литиевой батарейки. Тогда у вас будет возможность аккумулировать гораздо большее количество энергии.

На этом сборка генератора завершается. Для проверки напряжения в конденсаторе можно воспользоваться мультиметром. В том случае, если оно достаточное, можно попытаться подсоединить к установке небольшой светодиод. Такую генераторную установку можно применять для самых разных проектов, например, для изготовления устройств ночного освещения на основе светодиодов, которое не будет нуждаться в питании.

По сути, вместо фольги также можно воспользоваться и иными материалами:

  • алюминиевыми листами;
  • медными листами.

Если крыша вашего дома сделана из алюминия, то можно попытаться включить ее в схему генератора и посмотреть, какое количество энергии она может выработать.

Сама идея устройства для получения дармовой энергии из эфира неизменно была очень востребована. Не только аматёры, но и многие именитые учёные всерьёз и небезрезультатно занимались этим вопросом. Нынче не стало меньше желающих разработать подобную установку и её сделать самому. Энергию из эфира для дома сегодня можно попытаться получить, используя простые и доступные схемы.

Наука не даёт вразумительного определения ни полю, ни энергии. Зато она ясно формулирует - энергия не берётся из ниоткуда и никуда не девается. Пытаясь добывать «энергию из ничего», мы можем только стараться «встраиваться» в процесс её естественного преобразования из одних видов в другие.

Энергия определяется полезной работой, а поле - пространственными характеристиками влияния его источника. И статический электрический заряд, и динамический магнитный эффект вокруг проводника с током, и тепло нагретого тела считаются полями.

Любое поле может выполнить полезную работу, следовательно, передать часть своей энергии. Именно это свойство побуждает искать источники дармовой энергии в различных полях. Считается, что такой энергии существует в разы больше, чем в освоенных человечеством традиционных источниках.

Например, мы умеем использовать энергию гравитации огромной Земли, но не умеем её извлекать из притяжения малюсенького камня. Она слишком незначительная, чтобы это имело смысл, но практически неисчерпаема. Если придумать некий способ её извлечения из камешка, мы получим новый источник энергии.

Примерно этим занимаются исследователи и разработчики всех видов и мастей в попытках извлечь «энергию из ничего». То поле, из которого различные изыскатели стремятся научиться добывать энергетический ресурс, они называют эфир.

Эфир и его свойства

Многие его разработки считаются утраченными ещё со времени его смерти . Одни из них известны исключительно как принципы, другие - всего лишь в общих чертах. Тем не менее, многие нынешние конструкторы пытаются сегодня воспроизвести открытия и устройства Тесла, пользуясь уже современными научными и технологическими открытиями.

Большинство идей Тесла базируются на извлечении её из полей, формируемых взаимодействием Земли со своей ионосферой. Эта система рассматривается как большой конденсатор, в котором одна пластина - Земля, а другая - её ионосфера, облучаемая космическими лучами. Как и любой конденсатор, такая система постоянно накапливает заряд.

А разрабатываемые по идеям Тесла различные самодельные устройства предназначены для извлечения этой энергии.

Нынешние и классические разработки

Современные открытия и технологические разработки предоставляют широкое поле деятельности в получении «холодного электричества». Кроме устройств по идеям Тесла, сегодня широко распространены такие разработки для получения «энергии из пустоты», как:

Все эти способы имеют своих приверженцев, но большинство из них довольно ресурсоёмкие и затратные. Немаловажно и то, что они требуют глубоких специальных знаний и изобретательности. Всё это делает подобное конструирование в домашних условиях затруднительным. Энергия из эфира своими руками может быть получена с помощью несложных и доступных схем. Их реализация не потребует глубоких знаний или больших издержек, но некоторая подгонка, настройка и расчёты всё же понадобятся.

Не все такие разработки можно назвать извлекающими именно «эфирную энергию» . С точки зрения отсутствия расхода ресурсов на выработку электроэнергии, их по праву можно назвать извлекающими «энергию из ничего». Энергоносители этих систем не разрушаются при передаче энергии - отдавая её, они тут же её снова накапливают. Сама же система может вырабатывать электроэнергию если и не вечно, то, по крайней мере, очень-очень долго.

Энергия воздушной тяги

Эта идея - типичный пример такого устройства. Она не является в строгом смысле слова способом извлечь энергию из эфира. Это, скорее, способ её простого, дешёвого и длительного получения.

Для его реализации понадобится высокая труба, 15 метров и более. Такая труба ставится вертикально. Нижнее и верхнее отверстия должны быть открыты. Внутри неё устанавливаются электродвигатели с пропеллерами соответствующего диаметра, которые должны легко крутиться вместе с ротором. Восходящий поток воздуха вращает лопасти и роторы электродвигателей, в статоре вырабатывается электроэнергия.

Незамысловатая домашняя мини-электростанция

Одно из самых элементарных устройств можно сделать самостоятельно из кулера от компьютера (рис.1). В нём используется такая современная разработка, как неодимовые магниты.

Для его изготовления нужно:

Такая электростанция позволяет работать подключённой к ней маленькой лампочке. Взяв мотор побольше и более сильные магниты, можно получить больше электроэнергии.

Применение магнитов и маховика

Возможности подобной электростанции значительно увеличиваются при использовании инерции тяжёлого маховика. Упрощённая модель такой конструкции показана на рис. 2.На сегодняшний день существует масса разработок - в том числе и запатентованных подобных конструкций с горизонтальным и вертикальным расположением маховика. Все они имеют общую схему устройства.

Основная деталь - барабан маховика, по окружности которого расположены довольно мощные неодимовые магниты. По окружности движения ротора-маховика расположены несколько электрических катушек, выполняющих роль электромагнита и генератора электричества (статора). В комплект также входит аккумулятор и устройство переключения направления подачи напряжения.

Будучи один раз запущен, маховик, вращаясь по кругу, возбуждает своими магнитами электромагнитное поле в катушках. Это приводит к появлению в проводнике электрического тока, который подаётся для зарядки аккумулятора. Периодически часть вырабатываемой электроэнергии используется для подталкивания маховика. Заявляемый разработчиками КПД такого механизма составляет 92%.

В обоих этих устройствах энергия вырабатывается за счёт инерции вращения и сравнительно недавно разработанных мощных магнитов. Понимая принцип работы устройства, можно попытаться сделать его самостоятельно дома. По словам конструкторов, с помощью него можно получать до 5 кВт*ч полезной мощности.

Простой генератор Тесла

Сегодняшнее воздушное пространство значительно сильнее ионизировано, чем во времена Тесла.

Основание тому - существование огромного количества линий электропередач, источников радиоволн и прочих причин ионизации. Поэтому попытка получить электричество из эфира своими руками с помощью простейших конструкций по идеям Тесла может быть весьма эффективной.

Начинать самостоятельные эксперименты лучше с доступных для изготовления в домашних условиях приспособлений. Одно из них - простейший трансформатор Тесла. Это устройство позволяет буквально «получать энергию из воздуха». Его принципиальная схема изображена на рис. 3.В этой установке используются две пластины. Одна закапывается в землю, а другая поднимается на некоторую высоту над её поверхностью.

На пластинах, как и в конденсаторе, накапливаются потенциалы противоположного знака. Само устройство состоит из стартового источника питания (аккумулятор 12 В), подключённого через разрядник к первичной обмотке трансформатора, и параллельно включённого конденсатора. Накопившийся заряд пластин снимается со вторичной обмотки трансформатора.

Эта конструкция представляет опасность тем, что фактически моделирует возникновение атмосферного разряда молнии, и работы с такой установкой нужно проводить с соблюдением всех мер безопасности.

С помощью подобной конструкции можно получить небольшое количество электричества. Для более серьёзных целей потребуется использовать более сложные и дорогостоящие в реализации схемы. В этом случае также не обойтись без достаточных знаний физики и электроники.

Устройство разработки Стивена Марка

Эта установка, созданная электриком и изобретателем Стивеном Марком, предназначена для получения уже довольно значительного количества холодного электричества (рис.4). С помощью него можно питать как лампы накаливания, так и сложные бытовые устройства - электроинструмент, телерадиоаппаратуру, электродвигатели. Он назвал его Тороидальный Генератор Стивена Марка (TPU). Изобретение подтверждено патентом США от 27 июля 2006 года.

Принцип его действия основан на создании магнитного вихря, резонансных частот и ударов тока в металле. В отличие от многих других подобных устройств, будучи уже запущенным, генератор не требует подпитки и может работать неограниченное количество времени. Он был воссоздан много раз различными испытателями, которые подтверждают его работоспособность.

Существуют несколько конструкций этого устройства. Принципиально они между собой не разнятся, есть некоторые отличия в реализации схемы.

Здесь приведена схема и конструкция 2-частотного TPU. В основу принципа его действия положено столкновение вращающихся магнитных полей. Устройство имеет вес меньше 100 г и довольно простую конструкцию. Оно включает в себя такие компоненты:

Внутрення кольцеобразная основа (рис.5) выполняет роль стабильной платформы, вокруг которой расположены все другие катушки. Материал для изготовления кольца - пластик, фанера, мягкий полиуретан.

Размеры кольца:

  • ширина: 25 мм;
  • внешний диаметр: 230 мм;
  • внутренний диаметр: 180 мм;
  • толщина: 5 мм.

Внутренняя коллекторная катушка может быть сделана из 1–3 витков 5 параллельных многожильных проводов-литцендратов. Для намотки витков можно также использовать обычный одножильный провод с диаметром жилы 1 мм. Схематический вид после изготовления представлен на рис. 6.

Внешняя коллекторная катушка , она же - выходной коллектор двухполярного типа. Для его намотки можно использовать тот же провод, что и для управляющих катушек. Им покрывается вся доступная поверхность.

Каждая из катушек управления (рис.7) - плоского типа, по 90 градусов для установки вращающегося магнитного поля.

Чтобы сделать катушки с одинаковым количеством витков, необходимо до наматывания отрезать 8 проводов немного длиннее метра. Выводы поможет различать разный цвет проводов. Каждая катушка имеет 21 виток двухпроводного стандартного одножильного провода сечением 1 мм со стандартной изоляцией.

Выводы с наконечниками (рис. 7) - это два вывода внутренней коллекторной катушки.

Обязательной является установка общей обратной земли и 10-микрофарадного полиэстрового конденсатора, без которого на всё оборудование будут отрицательно воздействовать токи и возвращаемое излучение.

Схема соединений делится на 4 секции:

  • входа;
  • управления;
  • катушек;
  • выхода.

Секция входа предназначена для предоставления интерфейса к генератору прямоугольного сигнала

и выдачи синхронизированных прямоугольных волн подходящим образом. Это обеспечивается с помощью КМОП-мультивибратора.

Для реализации секции управления МОСФИТами (MOSFET) лучшее решение - стандартный интерфейс IRF7307, предлагаемый конструктором.

Как видно из последней модели, человеку без специального образования и навыков работы с физическими устройствами и приборами собрать такую конструкцию дома будет достаточно сложно.

Существует множество схем и описаний подобных устройств других авторов. Капанадзе, Мельниченко, Акимов, Романов, Дональд (Дон) Смит хорошо известны всем желающим найти способ получения энергии из ничего. Многие конструкции довольно простые и недорогие для того, чтобы их сделать и самому получить энергию из эфира для дома.

Вполне возможно, что многим таким аматёрам удастся практически достоверно узнать, как получить электричество в домашних условиях.

Основная масса людей убеждена, что энергию для существования можно получать только из газа, угля или нефти. Атом достаточно опасен, строительство гидроэлектростанций - очень трудоемкий и затратный процесс. Ученые всего мира утверждают, что запасы природного топлива могут скоро закончиться. Что же делать, где же выход? Неужели дни человечества сочтены?

Все из ничего

Исследования видов «зеленой энергии» в последнее время ведутся все интенсивней, так как это является путем в будущее. На нашей планете изначально есть все для жизни человечества. Нужно только уметь это взять и использовать на благо. Многие ученые и просто любители создают такие устройства? как генератор свободной энергии. Своими руками, следуя законам физики и собственной логике, они делают то, что принесет пользу всему человечеству.

Так о каких явлениях идет речь? Вот несколько из них:

  • статическое или радиантное природное электричество;
  • использование постоянных и неодимовых магнитов;
  • получение тепла от механических нагревателей;
  • преобразование энергии земли и ;
  • имплозионные вихревые двигатели;
  • тепловые солнечные насосы.

В каждой из этих технологий для высвобождения большего объема энергии используется минимальный начальный импульс.

Свободной энергии своими руками? Для этого нужно иметь сильное желание изменить свою жизнь, много терпения, старание, немного знаний и, конечно, необходимые инструменты и комплектующие.

Вода вместо бензина? Что за глупости!

Двигатель, работающий на спирте, наверное, найдет больше понимания, чем идея разложения воды на молекулы кислорода и водорода. Ведь еще в школьных учебниках сказано, что это совершенно нерентабельный способ получения энергии. Однако уже существуют установки для выделения водорода способом сверхэффективного электролиза. Причем стоимость полученного газа равна стоимости кубометров воды, использованных при этом процессе. Не менее важно, что затраты электричества тоже минимальны.

Скорее всего, в ближайшем будущем наряду с электромобилями по дорогам мира будут разъезжать машины, двигатели которых будут работать на водородном топливе. Установка сверхэффективного электролиза - это не совсем генератор свободной энергии. Своими руками ее достаточно трудно собрать. Однако способ непрерывного получения водорода по данной технологии можно совместить с методами получения зеленой энергии, что повысит общую эффективность процесса.

Один из незаслуженно забытых

Таким устройствам, как совершенно не требуется обслуживание. Они абсолютно бесшумны и не загрязняют атмосферу. Одна из самых известных разработок в области экотехнологий - принцип получения тока из эфира по теории Н. Теслы. Устройство, состоящее из двух резонансно настроенных трансформаторных катушек, является заземленным колебательным контуром. Изначально генератор свободной энергии своими руками Тесла сделал в целях передачи радиосигнала на дальние расстояния.

Если рассматривать поверхностные слои Земли как огромный конденсатор, то можно представить их в виде одной токопроводящей пластины. В качестве второго элемента в этой системе используется ионосфера (атмосфера) планеты, насыщенная космическими лучами (так называемый эфир). Через обе эти «пластины» постоянно текут разнополюсные электрические заряды. Чтобы «собрать» токи из ближнего космоса, необходимо изготовить генератор свободной энергии своими руками. 2013 год стал одним из продуктивных в этом направлении. Всем хочется пользоваться бесплатным электричеством.

Как сделать генератор свободной энергии своими руками

Схема однофазного резонансного устройства Н. Тесла состоит из следующих блоков:

  1. Две обычные аккумуляторные батареи по 12 В.
  2. с электролитическими конденсаторами.
  3. Генератор, задающий стандартную частоту тока (50 Гц).
  4. Блок усилителя тока, направленный на выходной трансформатор.
  5. Преобразователь низковольтного (12 В) напряжения в высоковольтное (до 3000 В).
  6. Обычный трансформатор с соотношением обмоток 1:100.
  7. Повышающий напряжение трансформатор с высоковольтной обмоткой и ленточным сердечником, мощностью до 30 Вт.
  8. Основной трансформатор без сердечника, с двойной обмоткой.
  9. Понижающий трансформатор.
  10. Ферритовый стержень для заземления системы.

Все блоки установки соединяются согласно законам физики. Система настраивается опытным путем.

Неужели все это правда?

Может показаться, что это абсурд, ведь еще один год, когда пытались создать генератор свободной энергии своими руками - 2014. Схема, которая описана выше, просто использует заряд аккумулятора, по мнению многих экспериментаторов. На это можно возразить следующее. Энергия поступает в замкнутый контур системы от электрополя выходных катушек, которые получают ее от высоковольтного трансформатора благодаря взаимному расположению. А зарядом аккумулятора создается и поддерживается напряженность электрического поля. Вся остальная энергия поступает из окружающей среды.

Бестопливное устройство для получения бесплатного электричества

Известно, что возникновению магнитного поля в любом двигателе способствуют обычные изготовленные из медного или алюминиевого провода. Чтобы компенсировать неизбежные потери вследствие сопротивления этих материалов, двигатель должен работать непрерывно, используя часть вырабатываемой энергии на поддержание собственного поля. Это значительно снижает КПД устройства.

В трансформаторе, работающем от неодимовых магнитов, нет катушек самоиндукции, соответственно и потери, связанные с сопротивлением, отсутствуют. При использовании постоянного вырабатываются ротором, вращающимся в этом поле.

Как сделать небольшой генератор свободной энергии своими руками

Схема используется такая:

  • взять кулер (вентилятор) от компьютера;
  • удалить с него 4 трансформаторные катушки;
  • заменить небольшими неодимовыми магнитами;
  • ориентировать их в исходных направлениях катушек;
  • меняя положение магнитов, можно управлять скоростью вращения моторчика, который работает абсолютно без электричества.

Такой почти сохраняет свою работоспособность до извлечения из цепи одного из магнитов. Присоединив к устройству лампочку, можно бесплатно освещать помещение. Если взять более мощный движок и магниты, от системы можно запитать не только лампочку, но и другие домашние электроприборы.

О принципе работы установки Тариэля Капанадзе

Этот знаменитый генератор свободной энергии своими руками (25кВт, 100 кВт) собран по принципу, описанному Николо Тесла еще в прошлом столетии. Данная резонансная система способна выдавать напряжение, в разы превосходящее начальный импульс. Важно понимать, что это не «вечный двигатель», а машина для получения электричества из природных источников, находящихся в свободном доступе.

Для получения тока в 50 Гц используются 2 генератора с прямоугольным импульсом и силовые диоды. Для заземления используется ферритовый стержень, который, собственно, и замыкает поверхность Земли на заряд атмосферы (эфира, по Н. Тесла). Коаксиальный кабель применяется для подачи мощного выходного напряжения на нагрузку.

Говоря простыми словами, генератор свободной энергии своими руками (2014, схема Т. Капанадзе), получает только начальный импульс от 12 В источника. Устройство способно постоянно питать током нормального напряжения стандартные электроприборы, обогреватели, освещение и так далее.

Собранный генератор свободной энергии своими руками с самозапиткой устроен так, чтобы замкнуть цепь. Некоторые умельцы пользуются таким способом для подзарядки аккумулятора, дающего начальный импульс системе. В целях собственной безопасности важно учитывать тот факт, что выходное напряжение системы имеет высокие показатели. Если забыть об осторожности, можно получить сильнейший удар током. Так как генератор свободной энергии своими руками 25кВт может принести как пользу, так и опасность.

Кому все это нужно?

Сделать генератор свободной энергии своими руками может практически любой человек, знакомый с основами законов физики из школьной программы. Электропитание своего собственного жилища можно полностью перевести на экологическую и доступную энергию эфира. С использованием таких технологий снизятся транспортные и производственные расходы. Атмосфера нашей планеты станет чище, остановится процесс «парникового эффекта».