Информационный портал по безопасности. Алгоритм Брезенхема в паяльной печи — теория Технические характеристики контроллера электроплиты

Регулятор мощности для паяльника.

Данный регулятор позволяет регулировать мощность на нагрузке двумя способами.

  1. Фазоимпульсным - изменение угла открытия симистора.
  2. По пропуску нужного кол-ва полупериодов.

Для второго способа распределение импульсов находится по алгоритму Брезенхема, исходный код данного решения я полностью взял из статей и постов на форумах уважаемого Ридико Леонида Ивановича , большое ему спасибо!

Регулятор управляется тремя кнопками:

  1. SET – при удержании более 2сек вход в режим настроек, при кратковременном нажатии листание трех быстрых уставок мощности.
  2. Минус.
  3. Плюс.

Регулятор позволяет хранить 3 быстрые настройки мощности. Есть функция авто выключения, если в течении 30 минут не было нажатий на кнопки, индикатор начинает мигать, далее, через 10 минут произойдет выключение нагрузки.

Блок схема управления в режиме настроек.

При нажатии SET с удержанием более 2сек на экран выводится надпись РЕГ, далее кнопками плюс/минус выбирается нужный алгоритм

  • PAU - алгоритм Брезенхема.
  • FI – фазоимпульсный.
Если выбран алгоритм FI
ЧИС – регулировка от 0..145. То есть полупериод разбит на 145 значений. ПРЦ – регулирование от 0 до 100%, то есть идет автоматический пересчет шкалы 145 в проценты Далее идут три быстрых уставки мощности “-1-” ”-2- ” ”-3-”.
INC – шаг на который будет увеличиваться/уменьшаться мощность кнопками плюс/минус.
_t_ - управление функцией авто-выключения ON-включено, OFF-выключено.

Как видно из блок-схемы быстрые устваки мощности для режимов PAU и FI(ПРЦ) используются одни и те же, так как их диапазон 0..100. Для FI(ЧИС) свои уставки, так как их диапазон 0..145.

Доступно быстрое включение регулятора на полную мощность нажатием двух кнопок SET+ПЛЮС (кнопку SET следует нажимать немного ранее), при этом на экран выведется надпись “on”. Быстрое выключение по нажатию SET+МИНУС, при этом на экран выведется надпись “OFF”.

Диагностические сообщения.

  • noC – нет синхроимпульсов, при этом запрещается подача управляющих импульсов на симистор.
  • EEP – ошибка данных в EEPROM, лечится заходом в режим настроек, после редактирования параметров надпись пропадает.

В железе.



Алгоритм Брезенхема является одним из старейших алгоритмов в машинной графике. Казалось бы, как можно применить алгоритм построения растровых прямых при создании домашней паяльной печи? Оказывается, можно, причем с очень достойным результатом. Забегая вперед, скажу, что данный алгоритм очень хорошо скармливается маломощному 8-битному микроконтроллеру. Но обо всем по порядку.

Алгоритм Брезенхе́ма - это алгоритм, определяющий, какие точки двумерного растра нужно закрасить, чтобы получить близкое приближение прямой линии между двумя заданными точками. Суть алгоритма заключается в том, чтобы для каждого столбца X (см. рисунок) определить какая строка Y ближе всего к линии, и нарисовать точку.

Теперь посмотрим, как подобный алгоритм поможет нам при управлении ТЭНами в электропечи.

ТЭН питается от сетевого напряжения 220В/50Hz. Взглянем на график.


При подаче такого напряжения в чистом его виде на вход электронагревателя мы получим на выходе 100% мощность нагрева. Все просто.



Что будет если подать на вход ТЭНа только положительную полуволну сетевого напряжения? Правильно, мы получим 50% выходной мощности нагрева.



Если подать каждую третью полуволну, мы получим 33% мощности.

В качестве примера возьмем 10% градацию выходной мощности и временной отрезок в 100мс, что равносильно 10 полуволнам сетевого напряжения. Нарисуем сетку 10х10 и представим, что ось Y это ось значений выходной мощности. Проведем прямую от 0 до необходимого значения мощности.

Прослеживаете зависимость?
Увеличив временной отрезок до 1 сек, можно получить градацию выходной мощности в 1%. Получится сетка 100х100 со всеми вытекающими.

А теперь о приятном:
Алгоритм Брезенхема можно построить в цикле таким образом, чтобы на каждом шаге по оси X просто отслеживать значение ошибки, которое означает - вертикальное расстояние между текущим значением y и точным значением y для текущего x . Всякий раз, когда мы увеличиваем x , мы увеличиваем значение ошибки на величину наклона. Если ошибка превысила 0.5, линия стала ближе к следующему y , поэтому мы увеличиваем y на единицу (читай - пропускаем одну полуволну напряжения), одновременно уменьшая значение ошибки на 1.

Такой подход легко сводится к циклическому целочисленному сложению (об этом позже, при описании алгоритма работы МК в следующей статье), что несомненный плюс для микроконтроллеров.

Я намеренно не стал грузить вас формулами. Алгоритм элементарный, легко гуглится. Я лишь хочу показать его возможность применения в схемотехнике. Для управления нагрузкой будет использоваться типовая схема подключения симисторной оптопары MOC3063 с детектором нуля.

При таком подходе есть ряд преимуществ.

  • Минимальные помехи в сети из-за частых коммутаций большой нагрузки, включение/выключение будет происходить в моменты перехода напряжения через ноль.
  • Очень простой алгоритм - все вычисления сводятся к работе с целыми числами, что хорошо для микроконтроллера.
  • Нет необходимости городить детектор перехода напряжения через ноль (привет MOC3063). Даже если МК будет просто дергать ногой по таймеру, открывая оптопару, ошибка будет не критичной.

Продолжение следует.

Благодаря идее и участию Юрия Зинченко (ZenitSoft) было разработано и построено устройство, регулирующее мощность кухонной электроплиты методом пропуска периодов. За основу была взята (см. также блок ссылок в подвале). Разработанный вариант и в настоящее время работает у него, и он вполне доволен его работой.

После изготовления первого варианта устройства были замечены единичные сбои при работе и сравнительно сложная регулировка детектора перехода сетевого напряжения через ноль из-за сдвига фазы при получении импульса перехода.

В новом варианте схема и программа были переделаны так, чтобы было можно получить точное детектирования нуля с наивысшим приоритетом по прерыванию. Также был добавлен режим фазового управления мощностью.

Технические характеристики контроллера электроплиты

Симисторный регулятор позволяет регулировать мощность в активной нагрузке от нуля до 100% с шагом 1%. Величина регулируемой мощности определяется типом тиристора и свойствами радиатора охлаждения.
Для быстрого разогрева предусмотрена подача 100% мощности на заданное время, от нуля до 9 мин
Предусмотрен таймер обратного отсчета времени нагрева, от нуля до 999 мин.
Возможен выбор способа регулирования пропуском периодов или управлением длительностью полупериода (фазовый метод). Позволяет менять способы регулирования во время работы.
Запоминание всех установок при плановом или случайном отключении устройства от сети.
Габариты устройства 125×70 х 62 мм.

Краткое описание режимов регулирования

Пропуск периодов

Пропуск периодов позволяет решить проблему электромагнитной совместимости, так как включение симистора происходит в момент перехода сетевого напряжения через нуль.

Известно, что отдаваемую мощность прибора работающего на переменном напряжении можно регулировать, пропуская в неё не все периоды напряжения сети. Если взять сеть частотой 50Гц, то в 2с проходит 100 периодов, значит если в 2 с пропустить, допустим, 10 периодов, то получим 10% мощности, и точность регулирования составит 1%. При этом очень желательно чтобы периоды шли не пачками, а были бы распределены равномерно.
Это достигается использованием алгоритма Брезенхема , который распределяет заданный процент мощности равномерно во времени. Причем это достигается применением в программе только целочисленной арифметики, без деления и умножения, что существенно упрощает и ускоряет вычисления. Вычисления и управление по алгоритму Брезенхема запускаются сразу после поступления внешнего прерывания.
Режим пропуска периодов применим для управления резистивными нагрузками, но не применим для осветительных приборов, так как вызывает мигание ламп накаливания.

Фазовое регулирование

Альтернативным методом управления мощностью является метод фазового управления
Для изменения мощности, подведенной к нагрузке через симистор, может использоваться фазовое управление. Сущность метода заключается в отпирании симистора на каждом полупериоде переменного тока с постоянной задержкой относительно точки перехода через ноль. Таким образом, от каждого полупериода отрезается «ломтик». Это и будет так называемая широтно-импульсная модуляция, позволяющей управлять током в (или, что реже, напряжением на) нагрузке с максимальным КПД.

Преимуществом этого метода является то, что частота пульсаций на нагрузке остается равной сетевой. Это важно для управления осветительными приборами, так как снижение частоты может сказаться на появлении мерцания, заметного глазом. Но при регулировании данным методом появляется особенность неравномерности характеристики регулирования.


Прямое решение этого уравнения требует поиска корней квадратного уравнения и вычисление арккосинуса полученного корня. Это довольно сложная задача для микроконтроллера, как по времени, так и по объему ресурсов. Поэтому значительно более простым оказалось применение метода кусочно-линейной аппроксимации, без значительной потери точности, что наглядно видно из графика.


По оси x указано значение устанавливаемой мощности в процентах, а по оси y значение угла открывания симистора в значениях Π/100. Синий график – вычисленный по формулам, а коричневый создан с помощью аппроксимации. Как видно из рисунка расхождения между реальными и вычисленными значениями весьма незначительны.
Неприятной особенностью фазового метода являются помехи, которые могут появиться в связи с резким переключением симистора, поэтому желательно применение фильтров на входе.

Для обоих методов управления мощностью необходимо знать, когда сетевое напряжение переходит через нуль и поэтому основной цикл программы - отслеживание перехода сетевого напряжения через ноль и подача его на вход внешнего прерывания микроконтроллера, как на вход с наивысшим приоритетом.

Схема и описание силовой части регулятора мощности


Силовой блок выдает напряжение +5V, формирует импульсы перехода сети через ноль и содержит схему управления нагрузкой с помощью симистора.
Детектор перехода сетевого напряжения через ноль взят из журнала «Радиолоцман». Он выдает импульсы перехода с интервалом 10 мсек.
Конденсатор С6 заряжается до 25 Вольт - уровня ограничения стабилитрона D12. Входной ток ограничивается резистором R2. Когда выпрямленное входное напряжение опускается ниже напряжения на конденсаторе С6, открывается транзистор Q3 и генерирует импульс длительностью в несколько сотен микросекунд. Оптрон U2 обостряет фронты и делает выходной импульс более прямоугольным.

Схема источника +5 Вольт подробно описана в журнале «Радио» № 11 за 2007 год, стр. 30, в статье «Доработка ЗУ сотового телефона». Добавлен стабилизатор на 78L05 для уменьшения помех и для дополнительной стабилизации.
Работа схемы: Напряжение сети через резистор R1, который выполняет функции предохранителя, поступает на мостовой выпрямитель на диодах D1 -D4 и сглаживается конденсатором С1. Стабилизация выходного напряжения осуществляется косвенным методом. Для этого напряжение со второй обмотки трансформатора выпрямляется диодом D5, сглаживается конденсатором С2 и через стабилитрон D6 поступает на базу транзистора. Для защиты источника в момент подключения к сети, а также при резких колебаниях напряжения в сети, установлена защита по току Q2 на элементах Q1, R7 на уровне 60…70 мА.

Подключение симистора выполнено по схеме из даташита на оптосимистор MOC3052.
Когда силовой блок проектировался, предполагалось, его применение только в режиме с пропуском периодов, поэтому в схеме отсутствуют фильтры для защиты от помех. Для работы в режиме фазового регулирования их желательно добавить, хотя бы простейший LC фильтр перед симистором.

Схема управляющей части регулятора мощности


NB! На принципиальной схеме неверно указаны номиналы резисторов R2 - R6. Правильный номинал 680 Ом.
Применен индикатор с общим катодом.


Схема блока управления получилась довольно простой. Три кнопки управления, 3-х разрядный индикатор и два светодиода позволяют управлять и следить за всеми функциями устройства.
Платы блоков соединяются 4-х проводным шлейфом.

Программное обеспечение

Программа написана на языке Си для компилятора «mikroC for PIC». Комментарии, расположенные в программе способствуют пониманию ее работы.
Для управления режимами работы применено управление с помощью одной кнопки с подсчетом числа нажатий. Алгоритм и часть кода взяты из .
Кнопку можно нажимать кратко (несколько раз), длинно или делать разные комбинации нажатий. Сколько за две секунды успеем «натыкать» - всё наше. Далее запустится процедура анализа собранных данных и всё расставит по порядку.
Бороться с дребезгом тут уже не обязательно, так как временные задержки организуются автоматически. См. подробности в статье.

В программе задействованы прерывания по внешнему входу INT, по таймеру 1 и таймеру 2.
На вход INT поступают импульсы с детектора перехода через ноль с периодом 10 мсек. Импульсы с таким периодом используются для получения фазовой регулировки, а для управления пропуском периодов необходим период 20 мсек, который получаем программно, пропуская один из импульсов. Алгоритм Брезенхема удачно вписался в программу внешних прерываний.
С таймера TMR1 получаем импульсы 5 мсек, которые используются для динамической индикации, работы кнопки «Выбор» и отсчета системного времени.
Таймер TMR0 настроен на время около 100 мксек и применяется только в режиме фазового управления.

Память EEPROM использована для сохранения всех режимов при отключении или внезапном пропадания питания. Запись в память происходит после пропадания импульсов внешнего прерывания. Восстановление данных из памяти происходит при включении регулятора в сеть. При таком использовании EEPROM резко уменьшается количество операций записи и время, которое она занимает.

Сборка и устройство прибора

Прибор собран на двух платах, соединенных между собой стойками.


Радиатор для симистора должен иметь достаточную площадь для отвода тепла.


Трансформатор и некоторые детали для источника питания +5 Вольт применены от старого телефонного зарядника. Оптосимистор U1 можно заменить аналогом, но следует учесть, что он должен быть без детектора нуля. Платы соединены между собой 4-х проводным шлейфом. Печатная плата для блока управления не создавалась, а была взята от предыдущей версии. С нее были удалены лишние детали и сделаны необходимые доработки. Обе платы и розетка для включения нагрузки заключены в корпус из металла и пластика.

Первое включение и проверка работы

Учитывая, что силовая часть устройства гальванически связана с сетью, желательно проявить максимум осторожности или использовать разделительный трансформатор при первом включении и проверке сигналов.
1. Включить силовую часть устройства.
2. Проверить напряжение источника +5 Вольт на выходе микросхемы 78L05.
3. Проверить наличие импульсов перехода через ноль – должны быть импульсы с периодом 10 мсек.
4. Соединить плату шлейфом, подключить в качестве нагрузки лампу накаливания 15 – 100вт и включить в сеть. При включении лампа загорится полным накалом и также загорится красный светодиод. После некоторого времени красный светодиод гаснет, и лампа начинает мигать в зависимости от установленной мощности. Если перейти в фазовый режим, то лампа будет гореть без миганий, а яркость будет изменяться в зависимости от установленной мощности. Желтый светодиод ШИМ практически полностью повторяет режим свечения лампы.
5. Проверить регулятор во всех режимах работы, согласно инструкции по управлению устройством.

Управление прибором

Режим управления мощностью – одно короткое нажатие кнопки «Выбор». На индикаторе отображается величина мощности в процентах.
Режим таймера отключения - два коротких нажатия кнопки «Выбор». На индикаторе отображается время, оставшееся до отключения нагрева в минутах. В этом режиме идет обратный отсчет времени в минутах. Можно установить время отключения таймера в минутах от 0 до 999. точка в последнем разряде мигает, если идет отсчет.
Режим установки времени быстрого разогрева - три коротких нажатия кнопки «Выбор». На индикаторе отображается время, подачи 100% мощности нагрева в минутах и секундах. При этом точка в первом разряде не мигает.
Режим изменения варианта регулировки с пропуском периода или фазовый – одно длинное нажатие кнопки. На индикаторе отображается режим PUL - с пропуском периода или F – фазовый.

В любом из режимов можно изменить значения кнопками «+» и «-». Нажатие кнопки кратковременно - добавление или уменьшение, удержание быстрый перебор. При этом кнопкой «Выбор» можно перейти в любой режим и просмотреть параметры любого режима, если не нажимать кнопки «+» и «-».

Если возникнет необходимость вернуться к начальным установкам, это можно сделать, удерживая кнопку «Выбор» около секунды при включении устройства в сеть.

Данный регулятор позволяет регулировать мощность на нагрузке двумя способами.

  1. Фазоимпульсным - изменение угла открытия симистора.
  2. По пропуску нужного кол-ва полупериодов.

Для второго способа распределение импульсов находится по алгоритму Брезенхема, исходный код данного решения я полностью взял из статей и постов на форумах уважаемого Ридико Леонида Ивановича , большое ему спасибо!

Регулятор управляется тремя кнопками:

  1. SET – при удержании более 2сек вход в режим настроек, при кратковременном нажатии листание трех быстрых уставок мощности.
  2. Минус.
  3. Плюс.

Регулятор позволяет хранить 3 быстрые настройки мощности. Есть функция авто выключения, если в течении 30 минут не было нажатий на кнопки, индикатор начинает мигать, далее, через 10 минут произойдет выключение нагрузки.

Блок схема управления в режиме настроек.

При нажатии SET с удержанием более 2сек на экран выводится надпись РЕГ, далее кнопками плюс/минус выбирается нужный алгоритм

  • PAU - алгоритм Брезенхема.
  • FI – фазоимпульсный.
Если выбран алгоритм FI
ЧИС – регулировка от 0..145. То есть полупериод разбит на 145 значений. ПРЦ – регулирование от 0 до 100%, то есть идет автоматический пересчет шкалы 145 в проценты Далее идут три быстрых уставки мощности “-1-” ”-2- ” ”-3-”.
INC – шаг на который будет увеличиваться/уменьшаться мощность кнопками плюс/минус.
_t_ - управление функцией авто-выключения ON-включено, OFF-выключено.

Как видно из блок-схемы быстрые устваки мощности для режимов PAU и FI(ПРЦ) используются одни и те же, так как их диапазон 0..100. Для FI(ЧИС) свои уставки, так как их диапазон 0..145.

Доступно быстрое включение регулятора на полную мощность нажатием двух кнопок SET+ПЛЮС (кнопку SET следует нажимать немного ранее), при этом на экран выведется надпись “on”. Быстрое выключение по нажатию SET+МИНУС, при этом на экран выведется надпись “OFF”.

Диагностические сообщения.

  • noC – нет синхроимпульсов, при этом запрещается подача управляющих импульсов на симистор.
  • EEP – ошибка данных в EEPROM, лечится заходом в режим настроек, после редактирования параметров надпись пропадает.


В железе.



Печатная плата . Обращаю Ваше внимание, что на ней не установлены резисторы для индикатора, они у меня установлены на самом индикаторе.