Какие существуют методы умножения частоты. Умножитель частоты (УЧ). Для схемы "Две схемы простых генераторов качающейся частоты"

Цепи фазовой подстройки частоты часто используются для умножения частоты. Раньше для этой цели использовались схемы генераторов гармоник с последующим выделением соответствующей гармоники узкополосным фильтром.

Намного лучше для этой цели подходит схема фазовой автоподстройки частоты. В этой схеме относительно просто можно изменять коэффициент умножения схемы изменением коэффициента деления в цепи обратной связи. Для умножения частоты используется либо цифровая, либо полностью цифровая схема фазовой автоподстройки частоты.

Умножители частоты в настоящее время обычно используются для увеличения внутренней тактовой частоты больших интегральных микросхем. В этих микросхемах цифровая схема фазовой автоподстройки частоты получила название аналогового умножителя тактовой частоты, а полностью цифровая схема ФАПЧ получила название цифрового умножителя частоты.

Для увеличения тактовой частоты цифровых микросхем чаще используется полностью цифровая схема умножения частоты, а для смешанных схем или схем, предназначенных для цифровой обработки сигналов предпочтительнее использование аналогового умножителя частоты. Это связано со спектральной чистотой выходного сигнала. Аналоговая схема обеспечивает более стабильное колебание, но при этом медленнее выходит на рабочий режим.

Пример принципиальной схемы аналогового умножителя тактовой частоты приведен на рисунке 4.1.

Рисунок 4.1. Принципиальная схема аналогового умножителя частоты.

В этой схеме опорный генератор с кварцевой стабилизацией частоты реализован на логических элементах D4 и D6. Генератор, управляемый напряжением, реализован на элементах D1 и D3. В качестве регулировочного элемента использован полевой транзистор VT1. Фазовый компаратор реализован на микросхемах D7, D8 и D10. Полосу захвата цепи фазовой автоподстройки определяет фильтр низкой частоты, реализованный на конденсаторе C4.

Данный умножитель частоты допускает только шестнадцать ступеней регулировки тактовой частоты. Код, определяющий коэффициент умножения вводится через упрощенный последовательный порт, собранный на сдвиговом регистре D2.

В более сложных схемах умножителей частоты вводятся делители между опорным генератором и фазовым компаратором. Это позволяет реализовывать дробные коэффициенты умножения частоты.

Глава 5 Частотный детектор, построенный на основе фапч

Частотные детекторы, построенные на основе элементов задержки, обычно реализуют широкую полосу детекторной характеристики. Однако используемые в реальных радиосистемах частотно-модулированные колебания обычно являются узкополосными. Поэтому для приема частотно-модулированных радиосигналов чаще используют частотные детекторы, построенные на основе схемы фазовой автоподстройки частоты.

В схеме частотного детектора не используется фазовый компаратор. Здесь лучше подходит схема фазового детектора , так как на ее выходе сигнал пропорционален фазе принимаемого колебания. Пример схемы частотного детектора, построенного на основе схемы фазовой автоподстройки частоты, приведен на рисунке 5.1.

Рисунок 5.1. Пример схемы частотного детектора, построенного на основе схемы фазовой автоподстройки частоты

В данной схеме частотный детектор реализован на основе цифрового фазового детектора . Как мы уже определили ранее, функции фазового детектора может выполнять логический элемент "исключающее ИЛИ". Генератор управляемый напряжением собран на инверторах D1 и D2, а подстройку его частоты осуществляет транзистор VT1.

При изменении частоты входного сигнала схема фазовой автоподстройки вынуждена подстраивать ГУН на эту же частоту. При этом естественно изменяется напряжение на затворе транзистора VT1. То есть напряжение в этой точке будет соответствовать отклонению частоты входного сигнала от своего номинального значения, а значит, вся схема в целом будет осуществлять детектирование частотно-модулированного сигнала.

Полоса детектируемого сигнала в приведенной схеме будет зависеть от крутизны регулировочной характеристики генератора, управляемого напряжением и коэффициента усиления фазового детектора, выполненного на логическом элементе D3.

умножитель частоты

радиоэлектронное устройство для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний. Используется преимущественно для повышения частоты стабильных колебаний в радиопередающих, радиолокационных, измерительных и других устройствах.

Умножитель частоты

электронное (реже электромагнитное) устройство, предназначенное для увеличения в целое число раз частоты подводимых к нему периодических электрических колебаний. Отношение fвых/fвх (fвх и fвых √ частоты колебаний соответственно на входе и выходе У. ч.) называется коэффициента умножения частоты m (m ³ 2; может достигать нескольких десятков). Характерная особенность У. ч. √ постоянство т при изменении (в некоторой конечной области) fвх, а также параметров У. ч. (например, резонансных частот колебательных контуров или резонаторов, входящих в состав У. ч.). Отсюда следует, что если fвх по каким-либо причинам получила приращение Dfвх (достаточно малое), то приращение Dfвых частоты fвых таково, что Dfвх/fвх = Dfвых/fвых, т. е. относительная нестабильность частоты колебаний при умножении остаётся неизменной. Это важное свойство У. ч. позволяет использовать их для повышения частоты стабильных колебаний (обычно получаемых от кварцевого задающего генератора) в различных радиопередающих, радиолокационных, измерительных и др. установках.

Наиболее распространены У. ч., состоящие из нелинейного устройства (например, транзистора, варактора, или варикапа, катушки с ферритовым сердечником; электронной лампы) и электрического фильтра (одного или нескольких). Нелинейное устройство изменяет форму входных колебаний, вследствие чего в спектре колебаний на его выходе появляются составляющие с частотами, кратными fвх. Эти сложные колебания поступают на вход фильтра, который выделяет составляющую с заданной частотой mfвх, подавляя (не пропуская) остальные. Поскольку такое подавление в реальных фильтрах не является полным, на выходе У. ч. остаются нежелательные (т. н. побочные) составляющие, т. е. гармоники с номерами, отличными от m. Задача облегчается, если нелинейное устройство порождает практически только m-ю гармонику fвх, √ в этом случае иногда обходятся без фильтра (известны подобные У. ч. на туннельных диодах и специальных электроннолучевых приборах). При m > 5 бывает энергетически выгоднее использовать многокаскадные У. ч. (в них выходные колебания одного каскада служат входными для другого).

Находят применение также У. ч., действие которых основано на синхронизации автогенератора (см. Генерирование электрических колебаний). В последних возбуждаются колебания с частотой f0 = mfвх, которая становится в точности равной mfвх под действием поступающих на его вход колебаний с частотой fвх. Недостаток таких У. ч. √ сравнительно узкая полоса значений fвх, при которых возможна синхронизация. Кроме указанных, некоторое распространение получили радиоимпульсные У. ч., в которых на вход электрического фильтра подаются радиоимпульсы определённой формы, вырабатываемые под действием входных колебаний с частотой fвх.

Основная проблема при создании У. ч. √ уменьшение фазовой нестабильности выходных колебаний (обусловленной случайным характером изменения их фазы), приводящей к увеличению относительной нестабильности частоты на выходе по сравнению с соответствующей величиной на входе. Строгий расчёт У. ч. связан с интегрированием нелинейных дифференциальных уравнений.

Лит.: Жаботинский М. Е., Свердлов Ю. Л., Основы теории и техники умножения частоты, М., 1964; Ризкин И. Х., Умножители и делители частоты, М., 1966; Бруевич А. Н., Умножители частоты, М., 1970; Радиопередающие устройства на полупроводниковых приборах, М., 1973.

И. Х. Ризкин.

Википедия

Умножитель частоты

Умножитель частоты - электрическое или электронное устройство, в котором при подаче на вход колебаний с периодом 2 ⋅ π /ω на выходе формируются колебания с периодом 2 ⋅ π /N  ⋅ ω .

Умножители применяются для:

  1. Переноса кварцованных частот (СВЧ-диапазон;
  2. Синтезирования сетки частот;
  3. Измерения стабильности частоты.

В радиопередающих устройствах, применяя умножители, удаётся:

  1. Понизить частоту задающего генератора, что повышает стабильность;
  2. Расширить диапазон перестройки радиопередающего устройства при меньшем диапазоне перестройки задающего генератора;
  3. Повысить устойчивость работы радиопередающего устройства за счёт ослабления обратной связи, так как в умножителе частоты входные и выходные цепи настроены на разные частоты;
  4. Увеличить абсолютную девиацию частоты или фазы при частотной или фазовой модуляции.

1. Назначение, принцип действия и основные параметры

Умножители частоты в структурной схеме радиопередатчика (см. рис. 2.1) располагаются перед усилителями мощности ВЧ или СВЧ колебаний, повышая в требуемое число раз частоту сигнала возбудителя. Умножители частоты могут также входить в состав и самого возбудителя или синтезатора частот. Для входного и выходного сигнала умножителя частоты запишем:

где n - коэффициент умножения частоты в целое число раз.

Классификация умножителей частоты возможна по двум основным признакам: принципу действия, или способу реализации функции (17.1), и типу нелинейного элемента. По принципу действия умножители подразделяют на два вида: основанные на синхронизации частоты автогенератора внешним сигналом (см. разд. 10.3), в п раз меньшим по частоте (рис. 17.1,а), и с применением нелинейного элемента, искажающего входной синусоидальный сигнал, и выделением из полученного многочастотного спектра требуемой гармоники (рис. 17.1,б).

Рис. .1. Умножители частоты

По типу используемого нелинейного элемента умножители частоты второго вида подразделяют на транзисторные и диодные.

Основными параметрами умножителя частоты являются: коэффициент умножения по частоте n; выходная мощность n-й гармоники Р n , входная мощность 1-й гармоники Р 1 , коэффициент преобразования К пр =Р n /Р 1 ; коэффициент полезного действия =Р n /Р 0 (в случае транзисторного умножителя), уровень подавления побочных составляющих.

Недостаток умножителей частоты (рис. 17.1, а) первого вида состоит в сужении полосы синхронизма с увеличением номера гармоники п. У умножителей частоты второго вида уменьшается коэффициент преобразования К пр с повышением п. Поэтому обычно ограничиваются значением n = 2 или 3 и при необходимости включают последовательно несколько умножителей частоты, чередуя их с усилителями.

2. Транзисторный умножитель частоты

Схема транзисторного умножителя частоты (рис. 17.2) и методика его расчета практически ничем не отличаются от усилителя.

Необходимо только выходную цепь генератора настроить на n-ю гармонику и выбрать значение угла отсечки =120/n, соответствующее максимальному значению коэффициента  n (). При расчете выходной цепи коэффициент разложения косинусоидального импульса по 1-й гармонике  1 () следует заменить на коэффициент по n-й гармонике  n (). Контур в выходной цепи, настроенный в резонанс с n-и гармоникой сигнала, должен обладать удовлетворительными фильтрующими свойствами.

Рис. 17.2. Схема транзисторного умножителя частоты

Коэффициент умножения схемы на рис. 17.2 обычно не превышает 3–4 раз при КПД, равном 10–20%.

3. Диодные умножители частоты

Работа диодных умножителей частоты основана на использовании эффекта нелинейной емкости. В качестве последней используется барьерная емкость обратно смещенного р-n-перехода. Полупроводниковые диоды, специально разработанные для умножения частоты, называются варакторами. При =0,5 и  0 =0,5 В для нелинейной емкости варактора получим:

, (2)

где и - обратное напряжение, приложенное к p-n-переходу.

График нелинейной функции (17.2) показан на рис. 17.3.

Рис. 17.3. График нелинейной функции

Заряд, накапливаемый нелинейной емкостью, с напряжением и током связаны зависимостями:

, (3)

Две основные схемы диодных умножителей частоты с варакторами приведены на рис. 17.4.

Рис. 17.4. Диодные умножители частоты с варакторами

В схеме диодного умножителя параллельного вида (рис. 17.4, а) имеются два контура (или фильтра) последовательного типа, настроенные в резонанс соответственно с частотой входного  и выходного n сигналов. Такие контуры имеют малое сопротивление на резонансной частоте и большое - на всех остальных (рис. 17.5).

Рис. 17.5.Зависимость сопротивления контура от частоты

Поэтому первый контур, настроенный в резонанс с частотой входного сигнала о, пропускает только 1-ю гармонику тока, а второй контур, настроенный в резонанс с частотой выходного сигнала n, - только n-ю гармонику. В результате ток, протекающий через варактор, имеет вид:

Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при токе (17.4) напряжение на варакторе отлично от синусоидальной формы и содержит гармоники.

Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку.

Таким образом, с помощью нелинейной емкости в устройстве происходит преобразование мощности сигнала с частотой  в сигнал с частотой n, т.е. умножение частоты.

Аналогичным образом работает вторая схема умножителя частоты последовательного вида (рис. 17.4, б), в которой имеется два контура (или фильтра) параллельного типа, настроенные в резонанс соответственно с частотой входного  и выходного n сигналов. Такие контуры имеют большое сопротивление на резонансной частоте и малое - на всех остальных. Поэтому напряжение на первом контуре, настроенном в резонанс с частотой входного сигнала , содержит только 1-ю гармонику, а на втором контуре, настроенном в резонанс с частотой выходного сигнала n, - только n-ю гармонику. В результате напряжение, приложенное к варактору, имеет вид:

где U 0 - постоянное напряжение смещения на варакторе.

Поскольку емкость варактора (17.2) есть нелинейная функция, то согласно (17.3) при напряжении (17.5) ток, протекающий через варактор, отличен от синусоидальной формы и содержит гармоники. Одна из этих гармоник, на которую настроен второй контур, проходит в нагрузку. Таким образом, с помощью нелинейной емкости в схеме происходит преобразование мощности сигнала с частотой  в сигнал с частотой n, т.е. умножение частоты.

Варакторные умножители частоты в ДЦВ диапазоне при n=2 и 3 имеют высокий коэффициент преобразования К пр =P n /P 1 =0,6…0,7. При больших величинах п в СВЧ диапазоне значение К пр уменьшается до 0,1 и ниже.

Умножение частоты это процесс получения колебаний с частотой кратной частоте исходного колебания.

Умножение частоты применяется в случае, если по каким либо причинам невозможно получить колебание с требуемой частотой (на частотах нескольких сотен мегагерц и выше) или при необходимости получить частоту колебаний с точностью кратную определенной частоте.

Умножение частоты может осуществляться тремя методами:

  • метод угла отсечки;
  • метод получения частот с помощью периодической последовательности импульсов (ППИ);
  • метод получения кратных частот с помощью радиоимпульса.

Метод угла отсечки

Данный метод используется для получения гармонического колебания с кратной частотой из другого гармонического колебания. Для получения колебания с требуемой частотой необходимо трансформировать спектр входного сигнала (внести в спектр новые гармонические составляющие). Для трансформации спектра используется нелинейный элемент, работающий в режиме отсечки. Для этого положение рабочей точки задается, с помощью напряжения смещения U 0 , за пределами вольт-амперной характеристики элемента (рисунок 26). В этом случае элемент открывается лишь в момент, когда напряжение входного сигнала Uвх достигает определенного начального значения Uн. Когда Uвхуглом отсечки (q), который равен половине той части периода входного колебания, в течении которой через нелинейный элемент протекает ток, или, другими словами, равен половине длительности импульса. При q=0 напряжение на выходе элемента отсутствует, т. к. элемент все время закрыт. При q=180° элемент работает без отсечки и на выходе наблюдается гармоническое колебание, причем в спектре этого колебания будет присутствовать постоянная составляющая.

Рисунок26 - К пояснению режима работы нелинейного элемента при умножении частоты

Угол отсечки может быть определен из выражения

cos ? = (U н U 0 )/ Um (36)

где Um — амплитуда входного колебания.

Амплитуда импульсов выходного тока определяется выражением

Im = S ср ? Um (1 cos q ) (37)

В спектре полученной периодической последовательности содержится множество составляющих расположенных на частотах кратных частоте входного сигнала. Амплитуда этих составляющих определяется выражением

Im k = a k (q ) ? Im (38)

где Im k — амплитуда k-ой составляющей спектра отклика;

a k (q) — коэффициент пропорциональности для k-ой составляющей спектра;

Im — амплитуда импульсов выходного тока.

Коэффициенты a k (q) зависят от угла отсечки и определяются по функциям Берга. Графики функций Берга для постоянной составляющей и трех первых гармоник представлены на рисунке 27.

Рисунок 27 - Графики функций Берга

Для определения коэффициентов необходимо определить значения a k для всех функций при требуемом угле отсечки q. Например, необходимо определить коэффициенты пропорциональности для q=80°. По графику a 0 определяем коэффициент пропорциональности для постоянной составляющей при значении q=80°. Он равен a 0 (80°)»0,28. Аналогично определяем значение коэффициентов a 1 (80°)»0,47 (по функции a 1), a 2 (80°)»0,24 (по функции a 2)? a 3 (80°)»0,05 (по функции a 3).

При умножении частоты необходимо получить колебание с требуемой частотой как можно большей амплитуды. Это возможно при максимальных значениях a k (q). В свою очередь максимум a k (q) наблюдается в точках максимума соответствующих функций Берга. Каждая функция имеет максимум при одном определенном угле отсечки. Угол отсечки, при котором наблюдается наибольшая амплитуда требуемой гармоники, называется оптимальным углом отсечки . Так оптимальным углом отсечки для второй гармоники является q=60°, а для третьей q=40°. Оптимальный угол отсечки задается напряжением смещения U 0 .

Данный метод позволяет получить колебания с кратностью 2 и 3. Это объясняется тем, что амплитуды гармонических составляющих, в спектре отклика, с большими номерами имеют слишком малую амплитуду. Задание требуемого оптимального угла отсечки для этих составляющих приведет к уменьшению амплитуды импульсов выходного тока и опять таки к получению колебаний с очень малой амплитудой.

Принципиальная схема умножителя частоты реализующего метод угла отсечки приведена на рисунке 28.

Рисунок 28 - Принципиальная электрическая схема умножителя частоты на транзисторе

В этом умножителе в качестве нелинейного элемента используется биполярный транзистор VT1, работающий в режиме отсечки коллекторного тока. На транзистор подается напряжение питания Ек и напряжение смещения U 0 . Входное напряжение поступает через колебательный контур L1 C1. Колебательный контур используется для получения большей стабильности частоты входного колебания, т. е. чтобы на вход транзистора поступало колебание содержащее только одну гармонику на требуемой частоте, и тем самым исключить искажение получаемого колебания. Транзистор трансформирует спектр колебания. Затем гармоника с требуемой частотой выделяется колебательным контуром L2 C2, используемым в качестве полосового фильтра.

Характеристикой умножителя частоты является коэффициент умножения, показывающий во сколько раз частота выходного колебания превышает частоту входного колебания

Ку= fвых/ fвх (39)

Как отмечалось выше коэффициент умножения данного умножителя не превышает 3. Для получения Ку>3 необходимо использовать многокаскадные схемы умножителя (последовательное включение нескольких умножителей). Например для получения Ку=6 необходимо последовательно включить два умножителя с Ку=2 и Ку=3.

Методы умножения частоты с помощью ППИ и радиоимпульса

Метод получения кратных частот с помощью ППИ основан на том, что в спектре периодической последовательности уже имеются гармонические составляющие на кратных частотах сигнала, т. е. кратных первой гармонике (рисунок 29). Поэтому из спектра необходимо только выделить гармонику с требуемой частотой. Для получения колебания с большей амплитудой, необходимо выделять гармонические составляющие первого лепестка спектра, причем амплитуда составляющих уменьшается меньше, если количество составляющих в лепестке больше. Таким образом, для умножения частоты используются периодические последовательности со скважностью более 14.

Данный метод позволяет увеличить частоту колебания в десятки раз.

Метод получения кратных частот с помощью радиоимпульса заключается в перемножении исходного колебания с другим высокочастотным гармоническим колебанием, т. е. осуществляется модуляция гармонической несущей импульсным колебанием. В этом случае спектр импульсного колебания переносится в область частот гармонического колебания, в результате чего формируется радиоимпульс. Затем из спектра полученного радиоимпульса выделяют гармонику с требуемой частотой. Данный метод позволяет получить колебание с частотой в сотни раз превышающее частоту исходного колебания.

Рисунок 29 - Умножение частоты с помощью ППИ: а) исходная ППИ c частотой fs и скважностью 17; б) спектр ППИ; в) полученное колебание с частотой 10fs

Умножители частоты представляют собой генератор с внешним возбуждением, колебательный контур которого настроен на частоту, кратную частоте входного сигнала. Так как входной сигнал гармонический, то для обогащения его спектра он испытывает нелинейные преобразования (п.2.7.). При выборе точки покоя на ВАХ в начале координат или левее начала имеет место последовательность импульсов тока, как показано на рис. 3.8.

Рис. 3.8. Примерный вид последовательности импульсов тока через нелинейный элемент

Половина фазового угла, в пределах которого протекает ток через нелинейный элемент, называется углом отсечки. Итак, на рис. 3.8 – угол отсечки, который зависит как от положения точки покоя П, так и от амплитуды входного сигнала. С увеличением амплитуды входного сигнала в импульсах тока может появиться провал. При использовании в качестве нелинейных элементов транзисторов и электронных усилительных ламп провал вызван появлением обратного тока при больших амплитудах входного сигнала (см. лабораторную работу «Исследование генератора с внешним возбуждением»).

Спектр последовательности импульсов тока через нелинейный элемент

имеет амплитуды гармоник, убывающие с номером гармоник. Постоянная составляющая тока I 0 и амплитуды гармоник зависят от угла отсечки и могут быть вычислены через коэффициенты Берга (А.И.Берг – советский радиофизик, академик АН СССР):

; ; ;…, (3.10)

где I m и – амплитуда импульса (максимальное значение импульса);

, , , …, – коэффициенты Берга, зависящие от угла отсечки и вычисляемые по следующим формулам:

; (3.11)

где n = 1, 2, 3,…

На рис. 3.9 приведены графики Берга.

Рис. 3.9. Графики Берга

При выделении контуром n-ой гармоники мощность выделенных колебаний Р к и коэффициент полезного действия генератора вычисляются по следующим формулам:

, (3.14)

где Е К – напряжение источника питания (например, коллекторное напряжение);

Р И – мощность, затрачиваемая источником питания;

– коэффициент использования напряжения источника питания.

При умножении частоты электрическая энергия, поступаемая в колебательный контур в тормозящую фазу (см. принципы генерирования электромагнитных колебаний) первого периода колебания (рис. 3.10), поддерживает постоянное значение амплитуды сигнала на отрезке времени подачи этой энергии. Затем амплитуда убывает по экспоненциальному закону:

где , r – сопротивление контура, учитывающее потери энергии в контуре, L – индуктивность колебательного контура.

Рис. 3.10: а – примерный вид напряжения на контуре (на выходе генератора) в режиме умножения частоты n =2; пунктиром показана зависимость затуханий свободных колебаний; б – импульсы тока активного нелинейного элемента (например, транзистора), квадрат площади которых пропорционален электрической энергии, поступающей в контур через период собственных колебаний; импульсы поступают в тормозящую фазу напряжения

Очевидно, что чем меньше значение величины , тем стабильнее по амплитуде будут колебания на выходе умножителя частоты. Потери энергии в контуре учитываются добротностью контура

где – энергия, запасенная в контуре;

– энергия потерь в контуре за период колебания;

.

Интеграл берется по частям:

где ;

Подставляя в (3.16) и энергию потерь Е пот , и учитывая, что добротность контура Q определяется на резонансной частоте , окончательно получаем

где – волновое сопротивление контура.

Вывода выражения для волнового сопротивления контура можно произвести из равенства энергий запасенных в магнитном поле катушки и электрическом поле конденсатора:

. Откуда , .

Добротность нагруженного контура Q Н, то есть вычисляемая по определению (114), когда выход генератора с внешним возбуждением подключен к нагрузке, равна:

Q Н = 150…200, (3.18)

а волновое сопротивление контура

50…200 (3.19)

в зависимости от диапазона радиочастот.

При высокой добротности Q Н, то есть очень малых потерях электрической энергии за один период колебания, амплитуда затухающих колебаний на интервале времени t меняется несущественно; и этим фактором, влияющим на амплитудную стабильность умножителя частоты, можно пренебречь.

Другим, существенным фактором, влияющим на стабильность амплитуды колебаний с выхода умножителя частоты, является угол отсечки . Так как импульсы тока поставляют энергию в колебательный контур, то их длительность не должна превышать Т/2, где Т – период колебаний в контуре (см. рис. 3.10). Только в этом случае вся поступающая в контур энергия приходится на тормозящую фазу напряжения (электрического поля) и кинетическая энергия носителей зарядов в активных нелинейных элементах переходит в электрическую энергию колебаний в контуре. Следовательно, с увеличением кратности умножения частоты входного сигнала угол отсечки должен уменьшаться. Уменьшение приведет к уменьшению амплитуды импульса тока I m и, а это, в свою очередь, приведет к уменьшению амплитуды гармоники на выходе умножителя частоты (3.10). Если угол отсечки не изменять, то импульсы тока будут иметь длительность . Это приведет к существенной амплитудной нестабильности колебаний, так как энергия будет поставляться в контур не только в тормозящую фазу, но и в ускоряющую фазу колебаний. Легко экспериментально убедиться в том, что при происходит срыв колебаний в контуре (лабораторная работа: «Исследование генератора с внешним возбуждением»).

Двухкаскадная схема умножителя частоты входного сигнала показана на рис. 3.11. Первый каскад собран на транзисторе VT1, а второй на транзисторе VT2. Резисторы R б обеспечивают замыкание контура для протекания тока базы I б и создают отрицательные смещения на базах своих транзисторов за счет постоянной составляющей тока базы I б0 .

Рис. 3.11. Двухкаскадная схема умножителя частоты

Пример: для обеспечения некоторого угла отсечки необходимо точку покоя П сместить влево от начала координат (см. рис. 3.8) на 0,2 В. Импульсы тока базы i б (t) следует написать в форме (3.9), где . Тогда R б = U бэ0 /I б0 = 0,2/I б0 . При I б0 = 30 мкА, R б = 6,8 кОм.

Усилитель,собранный на транзисторе VT2, предназначен для усиления гармоники частотой f 0 = mf АГ до уровня нормальной работы второго каскада умножения. Усилитель должен работать в линейном режиме. Он собран по схеме с фиксированным напряжением на базе и эмиттерной стабилизацией (см. расчет данного усилителя).

Резистор R э обеспечивает температурную стабилизацию точки покоя. Конденсатор С э исключает отрицательную обратную связь (ООС) по переменному напряжению; для этого необходимо выполнение следующего условия: Х сэ << R э.

Резисторы R к обеспечивают расчетные значения напряжений между коллектором и эмиттером U кэ транзисторов.

Емкости фильтров С ф1 и С ф2 выбираются из условия развязки каскадов по композиционным частотам, близким к резонансным частотам колебательных контуров f 01 и f 02 .

Как уже отмечалось, для увеличения кратности умножения частоты одним каскадом необходимо уменьшать угол отсечки , что приводит к уменьшению амплитуды импульсов I m и и, следовательно, амплитуды выделяемой контуром гармоники кратной частоты, а это, в свою очередь, ограничивает кратность умножения. Для повышения кратности умножения частоты одним каскадом необходимо в него включить дополнительно два устройства: ограничитель и линейный резистивный усилитель, как показано на рис. 3.12.

Рис. 3.12. Каскад умножителя частоты, включающий ограничитель на транзисторе VT1, линейный усилитель на транзисторе VT2 и генератор с внешним возбуждением на транзисторе VT3

Резистивный усилитель, собранный на VT2, является усилителем с фиксированным током базы, подробный расчет которого дан в следующем разделе. Этот усилитель увеличивает амплитуду импульса, не изменяя угла отсечки , который задается выбором точки покоя П ограничителя, собранного на VT1. Положение точки покоя на входной характеристике транзистора VT1 определяется расчетом резистора R б1 . Подстроечный резистор R б2 позволяет установить критический режим работы генератора с внешним возбуждением (см. Генератор с внешним возбуждением).