Падение напряжения на стабилизаторе. Фиксированный стабилизатор напряжения с малым падением напряжения. Полная схема регулятора

MOSFET + TL431 = Последовательный компенсационный стабилизатор напряжения с минимальным падением

Идеальный LDO регулятор

LDO = low dropout = малое минимальное падение напряжения на проходном элементе

Для популярного трёх-выводного интегрального стабилизатора LM317 (datasheet) минимальное падение напряжения, при котором ещё нормируется его работа - 3 Вольта. Причём в документации этот параметр явно нигде не указан, а так, скромненько, в условиях измерений упоминается. В большинстве же случаев подразумевается, что падение на чипе 5 Вольт и более:
"Unless otherwise specified, VIN − VOUT = 5V" .

Баба Яга - против! Жалко терять 3 Вольта на глупом проходном транзисторе. И рассеивать лишние Ватты. Популярное решение проблемы - импульсные стабилизаторы - здесь не обсуждаем по причине того, что они свистят . С помехами можно бороться, но, как известно: кто не борется - тот непобедим! 😉

Идея
Идея данной схемки восходит к одному из многочисленных datasheet "ов на TL431. Вот, например, что предлагают National Semiconductor / TI:

Vo ~= Vref * (1+R1/R2)

Сам по себе такой регулятор не шибко интересен: на мой взгляд он ни чем не лучше, чем обычные трёхвыводные стабилизаторы 7805, LM317 и тому подобные. Минимальное падение на проходном дарлингтоне меньше 2 Вольт тут вряд ли удастся получить. Да к тому же никаких защит ни по току, ни от перегрева. Разве что транзисторы можно ставить на столько толстые, на сколько душа пожелает.

Недавно мне понадобилось-таки соорудить линейный стабилизатор с минимальным падением напряжения. Конечно, всегда можно извернуться, взять трансформатор с бОльшим напряжением на вторичке, диоды Шоттки в мост поставить, конденсаторов накопительных поболе... И всем этим счастьем греть трёхвыводной стабилизатор. Но хотелось-то изящного решения и с тем трансом, что был в наличии. Какой проходной регулятор может обеспечить падение близкое к нулю? MOSFET: у современных мощных полевиков сопротивление канала может быть единицы милли-Ом.

Простая замена дарлингтона на полевой транзистор с изолированным затвором и индуцированным каналом (т.е. самый обычный MOSFET) в схеме выше - не особо поможет. Так как пороговое напряжение затвор-исток будет Вольта 3-4 у обычных, и всё одно больше Вольта у "логических" MOSFET"ов - чем и будет задано минимальное проходное напряжение на таком стабилизаторе.

Интересно могло бы получиться при использовании полевика, работающего в режиме обеднения (т.е. со встроенным каналом), или с p-n переходом. Но к сожалению, мощные устройства этих типов нынче практически недоступны.

Спасает дополнительный источник напряжения смещения. Такой источник совсем не должен быть сильноточным - несколько миллиАмпер будет достаточно.

Работает это всё очень просто: когда напряжение на управляющем входе TL431, пропорциональное выходному напряжению, падает ниже порогового (2.5V) - "стабилитрон" закрывается и "отпускает" затвор полевика "вверх". Ток от дополнительного источника через резистор "подтягивает" напряжение на затворе, а, следовательно, и на выходе стабилизатора.
В обратную сторону, при увеличении выходного напряжения, всё работает аналогично: "стабилитрон" приоткрывается и уменьшает напряжение на затворе полевика.
TL431 суть устройство линейное, никаких защёлок в ней нету:

Реальность
В схеме реального устройства я всё же добавил защиту по току, пожертвовав пол-Вольта падения в пользу безопасности. В принципе, в низковольтных конструкциях часто можно обойтись плавким предохранителем, так как полевые транзисторы доступны с огромным запасом по току и при наличии радиатора способны выдерживать бешеные перегрузки. Если же и 0.5 Вольта жалко, и защита по току необходима - пишите, ибо есть способы 😉

30 января 2012: 🙂 Работает отлично! При токах нагрузки примерно от 2А и выше - мощные диоды желательно усадить на небольшой радиатор. R8=0; C7=0.1 ... 10мкФ керамика или плёнка.

При номиналах R5-R6-R7, указанных на схеме, диапазон регулировки выходного напряжения примерно от 9 до 16 Вольт. Естественно, реальный максимум зависит от того, сколько может обеспечить трансформатор под нагрузкой.
R4 необходимо использовать достойной мощности: PmaxR4 ~= 0.5 / R. В данном примере - двухватник будет в самый раз.

Где это может понадобиться
Например: в ламповой технике для питания накальных цепей постоянным током.
Зачем постоянный, да ещё так тщательно стабилизированный ток для питания нитей накала?

  1. Исключить наводки переменного напряжения в сигнальные цепи. Путей для просачивания "фона" из накальных цепей в сигнал несколько (тема для отдельной статьи!)
  2. Питать накал строго заданным напряжением. Есть данные, что превышение напряжения накала на 10% от номинального может сократить срок службы лампы на порядок. Нормы же допусков для напряжения питающей сети плюс погрешности исполнения трансформаторов и т.п. - 10% ошибки легко набежит.

Для 6-вольтовых накалов необходимо уменьшить R5: 5.6КОм будет в самый раз.

Что можно улучшить
Например, для питания нитей накала полезно добавить плавный старт. Для этого достаточно будет увеличить C4 скажем до 1000мкФ и включить между мостом и C4 резистор сопротивлением в 1КОм.

Немножко окололамповой мифологии
Позволю себе пройтись по поводу одного стойкого заблуждения, утверждающего, будто питание накала "постоянкой" отрицательно сказывается на "звуке".
Наиболее вероятный источник происхождения этого мифа, как водится - недостаток понимания и кривые ручки. Например: один трансформатор запитывает и аноды и накал. Номинальный ток накальной обмотки, скажем, 1А, который до этого питал накал ламп напрямую, и те потребляли чуть меньше этого самого 1А. Всё работало хорошо, может быть фонило чуток. Если теперь некий паяльщик-такелажник, мнящий себя "tube-guru", вдруг запитал те же лампы от той же обмотки но уже через выпрямитель/конденсатор/стабилизатор - всё, хана усилку! Объяснение простое, хотя не для всех очевидное:

  1. Во-первых, трансформатор теперь перегружен из-за импульсного характера тока заряда накопительной ёмкости (нужна отдельная статья!) Если вкратце: надо брать транс с номинальным током вторички примерно в 1.8 раза больше, нежели выпрямленный ток нагрузки.
  2. Во-вторых - ударные токи заряда накопительных емкостей в источнике питания накала ничего хорошего в анодное питание не добавят.
  • Заключение
  • Вам было интересно? Напишите мне!

Спрашивайте, предлагайте: в комментариях, или по e-mail (есть в моём профайле). Спасибо!

Всего Вам доброго!
- Сергей Патрушин.

This entry was posted in , by . Bookmark the .

Комментарии ВКонтакте

131 thoughts on “MOSFET + TL431 = Последовательный компенсационный стабилизатор напряжения с минимальным падением

Этот сайт использует Akismet для борьбы со спамом.

вызвала много откликов и вопросов. На некоторые вопросы я попытался ответить в комментариях к оригинальной статье. Здесь приведу несколько простейших вариаций на тему данного стабилизатора.Кстати, пока суть да дело я справился построить два 120-Ваттных блока питания, два "бочонка" со стабилизаторами собранным по обсуждаемой схеме.

Рабочий прототип

Окорпусение моих поделок всегда было проблемой. В этот раз, как мне кажется, я удачно выкрутился применив подставки для кухонной утвари из Икеи и кругляк, вырезанный из 6-миллиметровой плиты MDF.

120Ватт из бочонка

Ради чего весь сыр-бор?

Меня частенько называют сумасшедшим 🙂 И правда ведь: сегодня можно подобрать готовый импульсный источник питания практически под любые параметры. Стоить он будет возможно даже не дороже низкочастотного трансформатора, к тому же обычно оказывается и легче и компактней. Я же заплатил кучу деньгов за трансы и потратил несколько вечеров на сборку этих бочек. При том, что у меня уже были все необходимые источники. Итог: 7 импульсных коробочек были отправлены на хранение в подвал.

Открою секрет своего сумасшествия: это моя попытка уменьшить плотность электромагнитных полей в своём обиталище. К примеру микроволновка уже несколько лет тому назад была задарена людям, что выносят мусор из нашего подвала. Правда совесть немного всё же мучает: они ведь теперь облучаются и едят модифицированную пищу. Да и транс там был шикарный на 1килоВатт. 🙂

Вообще тема электромагнитных помех достойна диссера. Наверняка ещё не раз вернусь к ней в блоге...

На картинки можно "кликнуть" для просмотра в более высоком разрешении.

Распаяно "паутинкой" (МГТФ + Kynar)

Вариации на тему

Во всех приводимых ниже набросках сохранена нумерация элементов из .

Две вторичных обмотки + плавный старт

Вкратце я уже предлагал такую модификацию в предыдущей статье. Плавный запуск можно обеспечить добавлением всего лишь одного резистора R9.

Эффективный первичный источник - две вторичных обмотки

Примерный набор компонентов:

  • VD1, VD2 = диоды Шоттки 8A 40В
  • VD5-8 = 0.5A 200В маленький мостик
  • C1 = 15000 мкФ 25 В
  • C2, C3 = 47 мкФ 25 В
  • C4 = 1000 мкФ 35 В
  • R9 = 1 кОм
  • C6 = 0.1 мкФ керамика

Обратите внимание на увеличившуюся ёмкость C4. Совместно с R9 она обеспечивает плавное нарастание напряжения "V++" при включении устройства. Поскольку напряжение на выходе регулятора не может превышать V++ за вычетом порогового напряжения МДП транзистора, данная модификация обеспечивает так же и плавное нарастание выходного напряжения при старте.

Единственная вторичная обмотка + плавный старт

На схеме данной вариации от диодных мостов рябит в глазах 🙂 Спешу напомнить, что собственно умножитель остался без изменений: всё тот же маленький мостик и 3 конденсатора.

В случае, когда в системе уже присутствует какой-либо другой источник положительного напряжения (на несколько вольт выше того, что необходимо получить на выходе данного регулятора) - разумно будет использовать его в качестве "V++". От источника "V++" регулятор потребляет всего лишь несколько миллиампер, что не должно быть слишком обременительно для другого источника. Таким образом можно запросто избавиться от умножителя.

Обойдёмся без ограничителя тока

Без ограничителя тока схема может работать с пренебрежимо малым напряжением падения на проходном транзисторе и по-прежнему обеспечивать большие токи нагрузки, что недоступно ни одному из известных мне на сегодня промышленных LDO регуляторов.

Примерный список номиналов см. ниже.

Пожалуйста, не экономьте на предохранителях. Лучше заменить копеечную стеклянную трубочку с проволочкой, нежели тушить дымящийся трансформатор.
Рекомендую поставить "медленный" предохранитель (с буквой "T" - time) сразу после вторичной обмотки трансформатора. Предохранитель должен быть рассчитан на ток, примерно вдвое больший номинального тока нагрузки. Настоятельно не советую полагаться на предохранитель, стоящий в сетевом проводе, особенно в случае, когда трансформатор имеет несколько вторичных обмоток от которых запитаны разные узлы устройства. В таком случае "дымный" сценарий может быть такой: одна вторичка перегружена и уже дымит, тогда как общее потребление остаётся в пределах нормы, например из-за отключения остальных узлов устройства.

Полная схема регулятора

Просто перерисованная так, чтобы легче читалось, я надеюсь.

Пример номиналов из моего прототипа:

  • R1, R6 = 2.2 кОм
  • R2, R3 = 470 Ом
  • R4 = 0.22 Ом 3Вт
  • R5 = 12 кОм
  • R7 = 2.2 кОм многооборотный
  • C5 = 10 nF керамика
  • VT1 = IRFZ40
  • VT2 = 2N2222
  • VD9 = 1N5244B (стабилитрон на 14В)

Тестируем!

Картинка замечательного устройства, выручавшего меня неоднократно при отладке аудио-усилителей. В этот раз с его помощью оттестировал мои "бочонки", рассчитанные на 12.6V 2A по стабилизированному выходу. Ограничитель тока установлен примерно на 2.5A.


Дальнейшее развитие идеи

  1. Внешний контроль включения в сочетании с плавным стартом;
  2. Термо-регулируемый вентилятор;
  3. Термический предохранитель;
  4. Набор для самостоятельной сборки;
  5. Программируемый источник...

Так что заглядывайте почаще, а лучше - подпишитесь на рассылку 😉

This entry was posted in , by . Bookmark the .

Несложная схема для регулирования, а также стабилизации напряжения представлена на картинке выше, её сможет собрать даже новичок в электронике. К примеру, на вход подано 50 вольт, а на выходе получаем 15,7 вольт или другое значение до 27V.

Основной радиодеталью данного устройства является полевой (MOSFET) транзистор, в качестве которого можно использовать IRLZ24/32/44 и другие подобные. Наиболее часто они производятся компаниями IRF и Vishay в корпусах TO-220 и D2Pak. Стоит около 0.58$ грн в розницу, на ebay 10psc можно приобрести за 3$ (0,3 доллара за штуку). Такой мощный транзистор имеет три вывода: сток (drain), исток (source) и затвор (gate), он имеет такую структуру: металл-диэлектрик(диоксид кремния SiO2)-полупроводник. Микросхема-стабилизатор TL431 в корпусе TO-92 обеспечивает возможность настраивать значение выходного электрического напряжения. Сам транзистор я оставил на радиаторе и припаял его к плате с помощью проводков.

Входное напряжение для этой схемы может быть от 6 и до 50 вольт. На выходе же получаем 3-27V с возможностью регулирования подстрочным резистором 33k. Выходной ток довольно большой, до 10 Ампер, в зависимости от радиатора.

Сглаживающие конденсаторы C1,C2 могут иметь ёмкость 10-22 мкФ, C3 4,7 мкФ. Без них схема и так будет работать, но не так хорошо, как нужно. Не забываем про вольтаж электролитических конденсаторов на входе и выходе, мною были взяты все рассчитаны на 50 Вольт.

Мощность, которую сможет рассеять такой не может быть более 50 Ватт. Полевой транзистор обязательно устанавливается на радиатор, рекомендуемая площадь поверхности которого не менее 200 квадратных сантиметров (0,02 м2). Не забываем про термопасту или подложку-резинку, чтобы тепло лучше отдавалось.

Возможно использование подстрочного резистора 33k типа WH06-1, WH06-2 они имеют достаточно точную регулировку сопротивления, вот так они выглядят, импортный и советский.

Для удобства на плату лучше припаять две колодки, а не провода, которые легко отрываются.

Обсудить статью СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Область применения

  • Питание схем от аккумуляторной батареи
  • Сотовые телефоны
  • Ноутбуки и карманные компьютеры
  • Сканеры штрих-кода
  • Автомобильная электроника
  • DC-DC модули
  • Опорное напряжение в устройствах
  • Линейные низковольтные блоки питания

Второй вариант схемы

Эта схема представляет из себя low drop регулируемый блок питания с очень малым падением напряжения на нём. Конечно существует множество других конструкций для регулируемых источников питания, но микросхема MIC2941 имеет ряд преимуществ.

В зависимости от режима работы падение всего 40 - 400 мВ (сравните с 1, 25 - 2 В на LM317). Это означает, что вы можете использовать более широкий диапазон выходных напряжений (в том числе формирование стандартных для некоторых цифровых схем 3.3 В от столь же низкого 3.7 В напряжения (например, 3-х AA или литий-ионный аккумулятор). Обратите внимание, что микросхемы серии MIC2940 работают с фиксированным напряжением выхода, а MIC2941 можно плавно регулировать.

Таблица напряжений MIC294х

Возможности схемы на MIC2941

  • Защита от короткого замыкания и от перегрева.
  • Входной диод для защиты цепи от отрицательного напряжения или переменного тока.
  • Два индикаторных светодиода для высокого и низкого напряжения.
  • Выходной переключатель, чтобы выбрать 3,3 В или 5 В.
  • На плате потенциометр для регулировки напряжения от 1,25 В до максимального входного напряжения (20V max).
  • Высокая точность поддержания выходного напряжения
  • Гарантированный ток выхода 1.25 A.
  • Очень низкий температурный коэффициент
  • Вход микросхемы может выдержать от -20 до +60 В.
  • Логически управляемый электронный выключатель.
  • И, конечно, малое падение напряжения - от 40 мВ.

Последовательный стабилизатор напряжения непрерывного действия - Регулируемый, с малым падением напряжения

Регулируемый последовательный стабилизатор

Для регулировки выходного напряжения в предыдущей схеме в качестве стабилитрона можно применять интегральный элемент с регулируемым напряжением стабилизации (управляемый стабилитрон). Есть и другой вариант.

Вашему вниманию подборки материалов:

Стабилизатор с низким падением напряжения

Обе предыдущие схемы хорошо работают, если разница между входным и выходным напряжением позволяет сформировать нужное смещение на базе транзистора VT1. Для этого надо минимум несколько вольт. Иногда такое напряжение поддерживать нецелесообразно, например потому, что потери и нагрев силового транзистора пропорциональны этому напряжению. Тогда применяется следующая схема.

Она может работать, даже если разница входного и выходного напряжений составляет всего насколько десятых долей вольта, так как в ней это напряжение не участвует в формировании смещения. Смещение подается через транзистор VT2 с общего провода. Если напряжение на движке подстроечного резистора меньше напряжения стабилизации стабилитрона плюс напряжение насыщения перехода база-эмиттер VT3, то транзистор VT3 закрыт, транзистор VT2 открыт, транзистор VT1 открыт. Когда напряжение на движке резистора превышает сумму напряжения стабилизации стабилитрона и насыщения перехода база-эмиттер VT3, транзистор VT3 открывается и отводит ток от базы VT2. VT2 и VT3 закрываются.

[Напряжение стабилизации стабилитрона, В ] = - [Напряжение насыщения база-эмиттер VT3, В ]

= ([Минимально возможное входное напряжение, В ] - [Напряжение насыщения база-эмиттер VT2, В ]) * * [Минимально возможный коэффициент передачи тока транзистора VT2 ] /

[Сопротивление резистора R2, Ом ] = [Минимальное выходное напряжение, В ] * [Сопротивление резистора R1, Ом ] * [Минимально возможный коэффициент передачи тока транзистора VT3 ] / / 3

[Мощность транзистора VT1, Вт ] = ([Максимально возможное входное напряжение, В ] - [Минимальное выходное напряжение, В ]) * [Максимально возможный выходной ток, А ]

[Мощность транзистора VT2, Вт ] = [Максимально возможное входное напряжение, В ] * [Максимально возможный выходной ток, А ] / [Минимально возможный коэффициент передачи тока транзистора VT1 ]

На транзисторе VT3 и стабилитроне мощность практически не рассеивается.