Расчет гасящего конденсатора. Конденсаторы для светодиодных лампочек Подбор гасящего конденсатора

Для чего я заказал эти конденсаторы? Ответ банален. Чтобы «колхозить» светодиодное освещение. А куда ещё их применить можно? Расскажу, как рассчитать ёмкость балласта для светодиодной лампочки. Обзор контрольный. Кто не боится пользоваться такими драйверами, заходим. Для тех, кто не уважает подобные схемы, заходить не обязательно.

Для начала, как обычно, посмотрим, что было в посылке

А в посылке – два пакета с кондёрами, ровно по 50шт. в каждом. Заказал ещё вот эти кондёры
$7.85 (50шт.) у этого же продавца.

Выбирал не только по напряжению и ёмкости, но и по размерам. Они должны быть минимальны, иначе не везде применишь.



А ещё я заказал диоды.


$8.21 (1000шт.)


С диодами я конечно перебрал. 1000штук – это много. Но разница в цене между 100 и 1000 просто смешная. Диоды 1N4007 (1A 1000V)имеют широчайшее применение в импортной бытовой технике. Можно сказать, ни одно изделие без них не обходится. Можно и в нашей применить. Пусть лежат, если что, подарю часть своим знакомым.


Ну а теперь перейдём к делу.
Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная).


Добавил R4, будет вместо предохранителя, а также смягчит пусковой ток. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды, и рассчитываем его ёмкость по формуле (1).


Для расчётов нам необходимо знать падение напряжения на светодиодах. Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но ооочень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 - 30В и т.д.). Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Я не сторонник насилия. Поэтому рассчитаем лампочку на 100мА. Будет запас по мощности. А запас, как говорится, карман не тянет.
По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
(220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети, от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. Кстати при помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек. Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения сети. Чем больше превышает, тем болезненнее реагирует (это дружеский совет).
И всё же, на сколько точны номиналы ёмкостей, проверим. Сначала 2,2мкФ.


Теперь 1мкФ.

Погрешности небольшие, не более 2%. Можно смело брать.
Перейдём к практическому применению. Кому интересно, посмотрите, куда применил. Это уже было в одном из предыдущих обзоров, поэтому спрятал под спойлер.

Вырезка из обзора панелей

В одном из моих обзоров подключал панели к драйверу на кондёрах. Вот такая лампочка получилась из энергосберегайки. Напомню, модуль состоит из пяти параллелей. В каждой параллели 18 светодиодов 2835smd. Падение напряжения 51В.



Посчитаем ток из формулы (2):
Получаем ток =(220-51)*2,2/3,18=117мА. 51В*117мА=6Вт светодиодной мощности (66,7мВт на каждый светодиод-33% от номинала) - расчётная мощность светильника. Собираем, включаем. РАБОТАЕТ!

Но без защитного стекла или пластикового рассеивателя подобные лампочки использовать нельзя. Все светодиоды под фазой, в рабочем режиме касаться нельзя. А теперь посмотрим, что показывают приборы. Куда ж я без них?


Прибор показал 5,95Вт.
Конечно, такую лампочку можно использовать разве что в сарае.
А у людей есть и сараи и гаражи. И туда тоже надо что-то вкручивать (деревенский вариант, объясню почему). Летом часто езжу в деревню. А в деревне напряжение больше 200В не поднимается, бывает и ниже. А теперь посчитаем мощность нашей лампочки при 180В в сети. Всё по той же формуле сначала найдём ток, который течёт через светодиоды. Только вместо 220В в формуле поставим 180В. Итого 110мА*51В=5,6Вт. Как видим, мощность почти не изменилась. А вот лампочки накаливания при таком напряжении ели коптят.
Вариант с гаражом. В гараже наоборот, лампочки не успеваю менять – минимум 240В. Посчитаем ток и мощность при 260В, всё по той же формуле. Имеем: 145мА*51В=7,4Вт (41% от максимальной мощности). До перегорания слишком далеко. Вывод: и при 180В будет светить и при260В не перегорит.
А теперь попробую оценить качественные характеристики света. Попробовал осветить стену

Светит очень ярко, тёплым приятным светом, ярче чем лампа накаливания на 60Вт (снимок ниже). Можете сравнить яркость и цветовой тон. Всё снималось в одинаковых условиях, на одном и том же расстоянии от стены.

Мощность лампы накаливания я тоже измерил для чистоты эксперимента, тем же прибором при тех же условиях.
Лампа накаливания – 56,5Вт.
Светодиодная лампа – 5, 95Вт.
Обе лампочки вставлял по очереди в настольный светильник с отражателем. Вы его видели.


Теперь вырезка из последнего моего обзора. Правда, добавил измерения.

Вырезка из обзора Про диоды 1W LED Bulbs High power

При помощи этих светодиодов решил переделать светильник.


Лампочки уже испортились, а новые идут невысокого качества.


Светильник решил подключить через кондёры, большАя мощность мне не нужна, а электронный драйвер приберегу для чего-нибудь более стоящего. А вот и схема.


Все диоды соединяю последовательно.


Плату для драйвера тоже изготовил из того, что было (по-быстрому)






Даже штырь для крепления был. Дроссель убирать не стал. Оставил для веса, иначе лампа будет падать.




Сделал по всем правилам электробезопасности. Ни одного элемента под напряжением наружу не выходит. Плата закреплена печатными проводниками внутрь.
Посчитаем мощность получившейся лампочки. Сначала по формуле (2) найдём ток через светодиоды при ёмкости балласта 3,2мкФ. (220-18)*3,2/3,18=203,2мА. 203,2мА*18В=3,66Вт – расчётная мощность (при напряжении в сети 220В).
Смотрим на прибор


Прибор показывает 3,78Вт. Но ведь и в розетке 232В, а не 220В. Погрешность минимальна.
И, как обычно, посмотрим как светит.

Это светит лампочка на 40Вт. Естественно, все лампочки в равных условиях (выдержка на ручнике, расстояние до стены одинаковое).

Это мой светодиодный светильник. Фотоэкспонометр подсказывает, что светит ярче сороковки.

Ну и наконец третий прибор, где их (кондёры) можно применить. Много лет пользовался самодельной зарядкой.

Дополнительная информация


В ней тоже стоит токовый драйвер на конденсаторах.


Сделана была задолго до того, как я получил кондёры и диоды из Китая. Поэтому все детали отечественные.


Схема стандартная, как в китайских лампочках.


Именно для этой зарядки я и вывел формулу для расчёта ёмкости балласта. Так что, если кто хочет, может сам рассчитать и ток и время заряда с другими конденсаторами в балласте.

А теперь попытаемся подытожить. Постараюсь выделить все плюсы и минусы подобных схем.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к при этом необходимы конденсаторы больших размеров.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
+Схема очень проста, не требует особых навыков при изготовлении.
+Не требует особых материальных затрат при изготовлении. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Я написал своё видение, свое отношение к подобным схемам, Оно может отличаться от вашего. Но я его высказал. А вывод как всегда делать вам.
На этом всё. Больше к подробному разбору подобных схем возвращаться не буду. Измусолил их от и до.
А в конце для тех, кто отслеживает треки.

(5.4.4)

Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10 –9 Ф и 1пкФ (пикофарада) = 10 –12 Ф.

Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции .

Конденсатор – это два проводника, называемые обкладками , расположенные близко друг к другу.

Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

Конденсаторы бывают плоские, цилиндрические и сферические.

Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

(5.4.5)

Помимо емкости каждый конденсатор характеризуется U раб (или U пр. ) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Соединение конденсаторов

Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

1) Параллельное соединение конденсаторов (рис. 5.9):

В данном случае общим является напряжение U :

Суммарный заряд:

Результирующая емкость:

Сравните с параллельным соединением сопротивлений R :

Напряженность поля внутри конденсатора (рис. 5.11):

Напряжение между обкладками:

где – расстояние между пластинами.

Так как заряд, то

.

2. Емкость цилиндрического конденсатора

Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

Бестрансформаторные источники питания с гасящим конденсатором удобны своей простотой, имеют малые габариты и массу, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В.

В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно соединенные конденсатор и нагрузка. Неполярный конденсатор , включенный в цепь переменного тока , ведет себя как сопротивление, но, в отличие от резистора, не рассеивает поглощаемую мощность в виде тепла.

Для расчета емкости гасящего конденсатора используется следующая формула:

С - емкость балластного конденсатора (Ф); Iэфф - эффективный ток нагрузки; f - частота входного напряжения Uc (Гц); Uс - входное напряжение (В); Uн - напряжение нагрузки (В).

Для удобства расчетов, можно воспользоваться онлайн калькулятором

Конструкция и устройств, питающихся от них, должна исключать возможность прикосновения к любым проводникам в процессе эксплуатации. Особое внимание нужно уделить изоляции органов управления.

  • Похожие статьи
  • 29.09.2014

    Диапазон рабочих частот 66…74 или 88…108 МГц С помощью R7 регулируется разделение между каналами ЗЧ. ***Сигнал подается с выхода частотного детектора УКВ(FM) - приемника на вход DA1 через корректирующую цепь R1C1. Литература Ж.Радиолюбитель 1 2000.

  • Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.

    Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.

    Вот так бы выглядела схема подключения настольной свето диодной лампы . А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.

    Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.

    Принцип работы схем на балластном конденсаторе


    В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.

    Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.

    Для диода абсолютно безразлично, с какой скоростью через него будут «пролетать» электроны. Расчет конде-ра основан на ограничении тока в цепи. Мы можем подать хоть десять киловольт, но если сила тока составит несколько микр оампер, количества электронов, проходящих через светоизлучающий кристалл, хватит для возбуждения лишь крохотной части светоизлучателя и свечения мы не увидим.

    В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.

    Расчет гасящего конденсатора для светодиода

    Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.

    Расчет емкости конденсатора для светодиода:

    С(мкФ) = 3200 * Iсд) / √(Uвх² - Uвых²)

    С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В;
    Iсд – номинальный ток диода (смотрим в паспортных данных);
    Uвх – амплитудное напряжение сети - 320В;
    Uвых – номинальное напряжение питания LED.

    Можно встретить еще такую формулу:

    C = (4,45 * I) / (U - Uд)

    Она используется для

    В статье приводится методика расчета емкости гасящего конденсатора и напряжения но его выводах в цепи активной нагрузки, в частности паяльника, которая позволяет существенно сократить объем вычислений,сведя их до минимума, что упрощает расчеты и сокращает время , необходимое для выбора гасящего конденсатора требуемой емкости и соответствующего номинального напряжения.

    В приведенном материале предлагается методика расчета емкости конденсатора и напряжения на нем при его последовательном включении с паяльником, причем рассматриваются два варианта. В первом варианте необходимо уменьшить мощность паяльника на требуемую величину с помощью гасящего конденсатора, а во втором - включить низковольтный паяльник в сеть 220 В, погасив излишек напряжения конденсатором.

    Осуществление первого варианта (рис.1) предполагает два вычисления с исходными данными (ток, потребляемый паяльником из сети I и сопротивление паяльника R1), затем два промежуточных вычисления (ток, потребляемый паяльником при меньшей его мощности на требуемую величину II и емкостное сопротивление конденсатора Rc) и, наконец, два последних вычисления, которые дают искомые

    рис.1


    величины емкость конденсатора С на частоте 50 Гц и напряжение на выводах конденсатора Uc). Таким образом, для решения задачи по первому варианту необходимо осуществить 6 вычислений.

    По второму варианту (рис.2), чтобы решить задачу, необходимо произвести с исходными данными два вычисления, как и в первом варианте, а именно: найти ток

    I, потребляемый паяльником из сети, и сопротивление паяльника R, затем следует одно промежуточное вычисление, из которого, как и в первом варианте, находится емкостное сопротивление конденсатора Rc и, наконец, два последних вычисления, из которых определяют емкость конденсатора С при частоте 50 Гц и на-

    рис.2

    пряжение на выводах конденсатора Uc. Таким образом, для решения задачи по второму варианту необходимо осуществить пять вычислений.

    Решение задач по обоим вариантам требует определенных затрат во времени. Методика не позволяет сразу в одно действие, минуя исходные и промежуточные расчеты, определить емкость гасящего конденсатора и соответственно напряжение на его выводах.

    Удалось найти выражения, которые позволяют сразу в одно действие вычислить емкость гасящего конденсатора, а затем напряжение на его выводах для первого варианта. Подобным образом получено выражение для определения емкости гасящего конденсатора для второго варианта.

    Вариант 1. Располагаем паяльником 100 Вт 220 В и желаем эксплуатировать его при мощности 60 Вт, используя при этом последовательно включенный с ним гасящий конденсатор. Исходные данные: номинальная мощность паяльника Р = 100 Вт; номинальное напряжение сети U = 220 В; требуемая мощность паяльника Р1 = 60 Вт. Требуется вычислить емкость конденсатора и напряжение на его выводах согласно рис.1. Формула для расчета емкости гасящего конденсатора имеет вид:

    С = Р∙10 6 /2πf 1 U 2 (P/P 1 - 1) 0,5 (мкФ).

    При частоте питающей сети = 50 Гц формула принимает вид:

    С =3184,71 Р/U 2 (Р/Р 1 - 1) 0,5 =

    3184,71-100 /220 2 (100/60-1)=8,06 мкФ.

    В контрольном примере емкость конденсатора равняется 8,1 мкФ, т.е. имеем полное совпадение результата. Напряжение на выводах конденсатора равно

    Uс = (РР 1) 0,5 ∙10 6 /2πf 1 СU (В).

    При частоте сети f 1 = 50 Гц формула упрощается:

    Uc = 3184,71 (PP 1) 0,5 /CU =

    3184,71(60∙100) 0,5 /8,06 220 =

    139,1 В.

    В контрольном примере Uc = 138 В, т.е. практическое совпадение результата. Таким образом, для решения задачи по первому варианту вместо шести вычислений нужно сделать всего два (без промежуточных расчетов). При необходимости емкостное сопротивление конденсатора можно сразу вычислить по формуле:

    Rc = U 2 (P/P, - 1) 0,5 /Р =

    220 2 (100/60 - 1) 0,5 /100 = 395,2 Ом.

    В контрольном примере Rc = 394 Ом, т.е. практическое совпадение.

    Вариант 2. Располагаем паяльником мощностью 25 Вт, напряжением 42 В и хотим включить его в сеть 220 В. Необходимо рассчитать емкость гасящего конденсатора, последовательно включенного в цепь паяльника, и напряжение на его выводах согласно рис.2. Исходные данные: номинальная емкость паяльника Р = 25 Вт; номинальное напряжение Ur = 42 В; напряжение сети U = 220 В. Формула для расчета емкости конденсатора имеет вид:

    С = Р∙10 6 /2πf 1 Ur(U 2 - Ur 2) 0,5 мкФ.

    При частоте сети f 1 = 50 Гц формула принимает вид:

    С = 3184,71 P/Ur(U 2 - Ur 2) 0,5 =

    3184,71 -25/42(220 2 - 42 2) =

    8,77 мкФ.

    Напряжение на выводах конденсатора легко определить, пользуясь исходными данными, по теореме Пифагора:

    Uc = (U 2 - Ur 2) 0,5 = (220 2 - 42 2) =

    216 В.

    Таким образом, для решения задачи по второму варианту вместо пяти вычислений необходимо осуществить только два. При необходимости величину емкостного сопротивления конденсатора, для данного варианта, можно определить по формуле:

    Rc = Ur(U 2 - Ur 2) 0,5 /P =

    42(220 2 - 42 2)/25 = 362,88 Ом.

    По контрольному примеру Rc = 363 Ом. Гасящий конденсатор С на приведенных рисунках желательно зашунтировать разрядным резистором МЛТ-0,5 номиналом 300...500 кОм.

    Выводы. Предлагаемая методика расчета емкости гасящего конденсатора и напряжения на его выводах позволяет существенно сократить объем вычислений, сведя их до минимума.

    К. В. Коломойцев.

    Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании. Разве что нишу в стене выдолбить, но это же не наш метод!

    Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

    Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем. Ну ладно, ближе к теме.

    Помните обычный резистивный делитель?

    Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к. сопротивления сильно велики. А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

    Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

    Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот. Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет. А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).

    Теоретическое отступление

    В цепи бывают три вида сопротивлений:

    Активное — резистор (R)
    Реактивное — конденсатор (X с) и катушка(X L)
    Полное же сопротивление цепи (импенданс) Z=(R 2 +(X L +X с) 2) 1/2

    Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
    X L =2pi*f * L
    Xc=-1/(2pi*f*C)
    Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.

    f — частота тока.

    Соответственно, на постоянном токе при f=0 и X L катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.

    Получается у нас вот такая вот схема:

    Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.

    Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:

    В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.

    А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.


    Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:

    I = 2F * C (1.41U — Uвых/2).

    • F — частота питающей сети. У нас 50гц.
    • С — емкость
    • U — напряжение в розетке
    • Uвых — выходное напряжение

    Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.

    В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА

    Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.

    Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:

    После чего, как обычно, все вытравил и спаял:



    Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.

    ТЕХНИКА БЕЗОПАСНОСТИ

    В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.

    Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.

    Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.

    Поэтому неукоснительно соблюдайте ряд правил:

    • 1. Номиналы надо ставить с запасом на как можно большее напряжение. Особенно это касается конденсатора. У меня стоит на 400вольт, но это тот что был в наличии. Лучше бы вообще вольт на 600, т.к. в электросети иногда бывают выбросы напряжения намного превышающие номинал. Стандартные блоки питания за счет своей инерционности его переживут запросто, а вот конденсатор может и пробить — последствия представьте себе сами. Хорошо если не будет пожара.
    • 2. Эта схема должна быть тщательным образом заизолирована от окружающей среды. Надежный корпус, чтобы ничего не торчало наружу. Если схема монтируется в стену, то она не должна касаться стен. В общем, пакуем все это дело наглухо в пластик, остекловываем и закапываем на глубине 20метров. :)))))
    • 3. При наладке ни в коем случае не лезть руками ни к одному из элементов цепи. Пусть вас не успокаивает что там на выходе 5 вольт. Так как пять вольт там исключительно относительно самой себя. А вот по отношению к окружающей среде там все те же 220.
    • 4. После отключения крайне желательно разрядить гасящий конденсатор. Т.к. в нем остается заряд вольт на 100-200 и если неосторожно сунуться куда нибудь не туда больно цапнет за палец. Вряд ли смертельно, но приятного мало, а от неожиданности можно и бед натворить.
    • 5. Если используется микроконтроллер, то прошивку его делать ТОЛЬКО при полном выключении из сети. Причем выключать надо выдергиванием из розетки. Если этого не сделать, то с вероятностью близкой к 100% будет убит комп. Причем скорей всего весь.
    • 6. То же касается и связи с компом. При таком питании запрещено подключаться через USART, запрещено обьединять земли.

    Если все же хотите связь с компом, то используйте потенциально разделенные интерфейсы. Например, радиоканал, инфракрасную передачу, на худой конец разделение RS232 оптронами на две независимые части.

    Расчет онлайн гасящего конденсатора бестрансформаторного источника питания (10+)

    Бестрансформаторные источники питания - Расчет онлайн гасящего конденсатора бестрансформаторного источника питания

    Но схема (A1) работать не будет, так как в ней через конденсатор проходит ток только в одну сторону. Он быстро зарядит конденсатор. После этого напряжение на схему подаваться уже не будет. Нужно, чтобы конденсатор, зарядившись в одном полупериоде, мог разрядиться в другом. Для этого в схеме (A2) введен второй диод.

    Сетевое напряжение подводится между выводом, помеченным 220V и общим проводом. Резистор R2 нужен для ограничения скачка тока. Когда схема работает в стационарном режиме при сетевом напряжении хорошего качества, никаких скачков тока не бывает. Но в момент включения мы можем попасть не на нулевое значение входного напряжения (что было бы оптимальным), а на любое, вплоть до амплитудного. Конденсатор при этом разряжен, так что низковольтная часть окажется подключенной напрямую к 310V амплитуды сетевого напряжения. Нужно, чтобы в этот момент диоды не сгорели. Для этого:

    [Сопротивление резистора R2, Ом ] = 310 / [Максимально допустимый одноразовый импульс тока через диод, А ]

    К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

    Если что-то непонятно, обязательно спросите!
    Задать вопрос. Обсуждение статьи. сообщений.

    Добрый вечер. Как ни старался, не смог по приведенным формулам для рис 1.2 пол учить значения ёмкостей конденсаторов С1 и С2 при приведенных значениях данных в вашей таблице (Uвх~220V, Uвых 15V, Iвых 100мА, f 50Hz). У меня проблема, включить катушку малогабаритного реле постоянного тока на рабочее напряжение -25V в сеть ~220V, рабочий ток катушки I= 35мА. Возможно я что то не
    Вычисление индуктивности и тока при параллельном и последовательном соединении д...

    Конденсатор воздушный, электролитический, пленочный, слюдяной, керамич...
    Особенности конденсаторов разных типов. Применение. Типовые схемы...

    Цепь, схема задержки включения, выключения. Симметричная, асимметрична...
    Схема цепи задержки включения / выключения на основе триггера Шмитта...

    Автоматическая регулировка температуры теплоносителя отопления (воды, ...
    Интеллектуальный термостат отопительного котла....