Расчет конденсатора для светодиодов. Радиолюбительские программы Расчет гасящего конденсатора онлайн

Некоторые радиолюбители при конструировании сетевых блоков питания вместо понижающих трансформаторов применяют конденсаторы в качестве балластных, гасящих излишек напряжения (рис.1).

Неполярный конденсатор, включенный в цепь переменного тока, ведет себя как сопротивление, но, в отличие от резистора, не рассеивает поглощаемую мощность в виде тепла, что позволяет сконструировать компактный блок питания, легкий и дешевый. Емкостное сопротивление конденсатора при частоте f описывается выражением:

Величина емкости балластного конденсатора Cб определяется с достаточной точностью по формуле:

где U c - напряжение сети, В;

I Н - ток нагрузки, А;

U H - напряжение на нагрузке, В. Если U H находится в пределах от 10 до 20 В, то для расчета вполне приемлемо выражение:

Подставив значения U c =220 В и U H =15 В, при I н =0,5 А получим значения Сб=7,28 мкФ (1) и Сб=7,27 мкФ (2). Для обоих выражений получается весьма приличное совпадение, особенно если учесть, что емкость обычно округляют до ближайшего большего значения. Конденсаторы лучше подбирать из серии К73-17 с рабочим напряжением не ниже 300 В.

Используя эту схему, всегда нужно помнить, что она гальванически связана с сетью, и вы рискуете попасть под удар электрическим током с потенциалом сетевого напряжения. Кроме того, к устройству с бес-трансформа-торным питанием следует очень осторожно подключать измерительную аппаратуру или какие-нибудь дополнительные устройства, иначе можно получить совсем не праздничный фейерверк.

Для питания даже маломощных устройств лучше все-таки применять понижающие трансформаторы. Если напряжение его вторичной обмотки не соответствует требуемому (превышает), то вполне безопасно применить гасящий конденсатор в цепи первичной обмотки трансформатора для снижения напряжения или для включения трансформатора с низковольтной первичной обмоткой в сеть (рис.2) Балластный конденсатор в этом случае подбирается из расчета, чтобы при максимальном токе нагрузки выходное напряжение трансформатора соответствовало заданному.

Литература

1. Бирюков С.А. Устройства на микросхемах. - М., 2000.

И.СЕМЕНОВ,

г.Дубна Московской обл.

Расчет онлайн гасящего конденсатора бестрансформаторного источника питания (10+)

Бестрансформаторные источники питания - Расчет онлайн гасящего конденсатора бестрансформаторного источника питания

Но схема (A1) работать не будет, так как в ней через конденсатор проходит ток только в одну сторону. Он быстро зарядит конденсатор. После этого напряжение на схему подаваться уже не будет. Нужно, чтобы конденсатор, зарядившись в одном полупериоде, мог разрядиться в другом. Для этого в схеме (A2) введен второй диод.

Сетевое напряжение подводится между выводом, помеченным 220V и общим проводом. Резистор R2 нужен для ограничения скачка тока. Когда схема работает в стационарном режиме при сетевом напряжении хорошего качества, никаких скачков тока не бывает. Но в момент включения мы можем попасть не на нулевое значение входного напряжения (что было бы оптимальным), а на любое, вплоть до амплитудного. Конденсатор при этом разряжен, так что низковольтная часть окажется подключенной напрямую к 310V амплитуды сетевого напряжения. Нужно, чтобы в этот момент диоды не сгорели. Для этого:

[Сопротивление резистора R2, Ом ] = 310 / [Максимально допустимый одноразовый импульс тока через диод, А ]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Добрый вечер. Как ни старался, не смог по приведенным формулам для рис 1.2 пол учить значения ёмкостей конденсаторов С1 и С2 при приведенных значениях данных в вашей таблице (Uвх~220V, Uвых 15V, Iвых 100мА, f 50Hz). У меня проблема, включить катушку малогабаритного реле постоянного тока на рабочее напряжение -25V в сеть ~220V, рабочий ток катушки I= 35мА. Возможно я что то не
Вычисление индуктивности и тока при параллельном и последовательном соединении д...

Конденсатор воздушный, электролитический, пленочный, слюдяной, керамич...
Особенности конденсаторов разных типов. Применение. Типовые схемы...

Цепь, схема задержки включения, выключения. Симметричная, асимметрична...
Схема цепи задержки включения / выключения на основе триггера Шмитта...

Автоматическая регулировка температуры теплоносителя отопления (воды, ...
Интеллектуальный термостат отопительного котла....


Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании. Разве что нишу в стене выдолбить, но это же не наш метод!

Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем. Ну ладно, ближе к теме.

Помните обычный резистивный делитель?

Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к. сопротивления сильно велики. А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот. Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет. А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).

Теоретическое отступление

В цепи бывают три вида сопротивлений:

Активное — резистор (R)
Реактивное — конденсатор (X с) и катушка(X L)
Полное же сопротивление цепи (импенданс) Z=(R 2 +(X L +X с) 2) 1/2

Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
X L =2pi*f * L
Xc=-1/(2pi*f*C)
Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.

f — частота тока.

Соответственно, на постоянном токе при f=0 и X L катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.

Получается у нас вот такая вот схема:

Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.

Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:

В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.

А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.


Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:

I = 2F * C (1.41U — Uвых/2).

  • F — частота питающей сети. У нас 50гц.
  • С — емкость
  • U — напряжение в розетке
  • Uвых — выходное напряжение

Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.

В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА

Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.

Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:

После чего, как обычно, все вытравил и спаял:



Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.

ТЕХНИКА БЕЗОПАСНОСТИ

В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.

Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.

Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.

Поэтому неукоснительно соблюдайте ряд правил:

  • 1. Номиналы надо ставить с запасом на как можно большее напряжение. Особенно это касается конденсатора. У меня стоит на 400вольт, но это тот что был в наличии. Лучше бы вообще вольт на 600, т.к. в электросети иногда бывают выбросы напряжения намного превышающие номинал. Стандартные блоки питания за счет своей инерционности его переживут запросто, а вот конденсатор может и пробить — последствия представьте себе сами. Хорошо если не будет пожара.
  • 2. Эта схема должна быть тщательным образом заизолирована от окружающей среды. Надежный корпус, чтобы ничего не торчало наружу. Если схема монтируется в стену, то она не должна касаться стен. В общем, пакуем все это дело наглухо в пластик, остекловываем и закапываем на глубине 20метров. :)))))
  • 3. При наладке ни в коем случае не лезть руками ни к одному из элементов цепи. Пусть вас не успокаивает что там на выходе 5 вольт. Так как пять вольт там исключительно относительно самой себя. А вот по отношению к окружающей среде там все те же 220.
  • 4. После отключения крайне желательно разрядить гасящий конденсатор. Т.к. в нем остается заряд вольт на 100-200 и если неосторожно сунуться куда нибудь не туда больно цапнет за палец. Вряд ли смертельно, но приятного мало, а от неожиданности можно и бед натворить.
  • 5. Если используется микроконтроллер, то прошивку его делать ТОЛЬКО при полном выключении из сети. Причем выключать надо выдергиванием из розетки. Если этого не сделать, то с вероятностью близкой к 100% будет убит комп. Причем скорей всего весь.
  • 6. То же касается и связи с компом. При таком питании запрещено подключаться через USART, запрещено обьединять земли.

Если все же хотите связь с компом, то используйте потенциально разделенные интерфейсы. Например, радиоканал, инфракрасную передачу, на худой конец разделение RS232 оптронами на две независимые части.

(5.4.4)

Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10 –9 Ф и 1пкФ (пикофарада) = 10 –12 Ф.

Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции .

Конденсатор – это два проводника, называемые обкладками , расположенные близко друг к другу.

Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

Конденсаторы бывают плоские, цилиндрические и сферические.

Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

(5.4.5)

Помимо емкости каждый конденсатор характеризуется U раб (или U пр. ) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Соединение конденсаторов

Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

1) Параллельное соединение конденсаторов (рис. 5.9):

В данном случае общим является напряжение U :

Суммарный заряд:

Результирующая емкость:

Сравните с параллельным соединением сопротивлений R :

Напряженность поля внутри конденсатора (рис. 5.11):

Напряжение между обкладками:

где – расстояние между пластинами.

Так как заряд, то

.

2. Емкость цилиндрического конденсатора

Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

Бестрансформаторные источники питания с гасящим конденсатором удобны своей простотой, имеют малые габариты и массу, но не всегда применимы из-за гальванической связи выходной цепи с сетью 220 В.

В бестрансформаторном источнике питания к сети переменного напряжения подключены последовательно соединенные конденсатор и нагрузка. Неполярный конденсатор , включенный в цепь переменного тока , ведет себя как сопротивление, но, в отличие от резистора, не рассеивает поглощаемую мощность в виде тепла.

Для расчета емкости гасящего конденсатора используется следующая формула:

С - емкость балластного конденсатора (Ф); Iэфф - эффективный ток нагрузки; f - частота входного напряжения Uc (Гц); Uс - входное напряжение (В); Uн - напряжение нагрузки (В).

Для удобства расчетов, можно воспользоваться онлайн калькулятором

Конструкция и устройств, питающихся от них, должна исключать возможность прикосновения к любым проводникам в процессе эксплуатации. Особое внимание нужно уделить изоляции органов управления.

  • Похожие статьи
  • 29.09.2014

    Диапазон рабочих частот 66…74 или 88…108 МГц С помощью R7 регулируется разделение между каналами ЗЧ. ***Сигнал подается с выхода частотного детектора УКВ(FM) - приемника на вход DA1 через корректирующую цепь R1C1. Литература Ж.Радиолюбитель 1 2000.

  • Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.

    Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.

    Вот так бы выглядела схема подключения настольной свето диодной лампы . А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.

    Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.

    Принцип работы схем на балластном конденсаторе


    В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.

    Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.

    Для диода абсолютно безразлично, с какой скоростью через него будут «пролетать» электроны. Расчет конде-ра основан на ограничении тока в цепи. Мы можем подать хоть десять киловольт, но если сила тока составит несколько микр оампер, количества электронов, проходящих через светоизлучающий кристалл, хватит для возбуждения лишь крохотной части светоизлучателя и свечения мы не увидим.

    В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.

    Расчет гасящего конденсатора для светодиода

    Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.

    Расчет емкости конденсатора для светодиода:

    С(мкФ) = 3200 * Iсд) / √(Uвх² - Uвых²)

    С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В;
    Iсд – номинальный ток диода (смотрим в паспортных данных);
    Uвх – амплитудное напряжение сети - 320В;
    Uвых – номинальное напряжение питания LED.

    Можно встретить еще такую формулу:

    C = (4,45 * I) / (U - Uд)

    Она используется для

    Иногда в электротехнике применяют блоки питания, не содержащие трансформатор. При этом возникает задача понижения входного напряжения. Например, понижение переменного напряжения сети (220 В) при частоте 50 герц до необходимого значения напряжения. Альтернативой трансформатору может служить конденсатор, который включают в цепь последовательно источнику напряжения и нагрузке (дополнительную информацию о применении конденсаторов см. в разделе «). Такой конденсатор и называют гасящим.
    Провести расчет гасящего конденсатора – это значит найти емкость такого конденсатора, который при описанном выше соединении в цепь, понизит входное напряжение до необходимого на нагрузке. Теперь получим формулу для расчета емкости гасящего конденсатора. Конденсатор, работающий в цепи переменного тока, имеет емкостное сопротивление (), которое связано с частотой переменного тока и собственной емкостью () (причем ), более точно:

    По условию мы включили в цепь переменного тока сопротивление (активная нагрузка()) и конденсатор. Общее сопротивление этой системы () можно вычислить как:

    Так как соединение последовательное, используя , запишем:

    где — падение напряжения на нагрузке (напряжение питания устройства); — напряжение сети, — падение напряжения на конденсаторе. Используя приведенные выше формулы, имеем:

    Если нагрузка небольшая, то использование конденсатора, включая его последовательно в цепь – это самый простой путь уменьшения сетевого напряжения. В том случае, если напряжение на выходе питания менее 10-20 вольт, то емкость гасящего конденсатора вычисляют по приближенной формуле: