Расчет параметров аэрофотосъемки беспилотным летательным аппаратом. Аэрофотосъёмка бпла в геодезии Использование аэрофотосъемки с бла в различных

УДК: 528.71 А.С. Костюк

Западно-Сибирскй филиал «Госземкадастрсъемка» - ВИСХАГИ, Омск

РАСЧЕТ ПАРАМЕТРОВ И ОЦЕНКА КАЧЕСТВА АЭРОФОТОСЪЕМКИ С БПЛА

В статье рассмотрены особенности расчета параметров аэрофотосъемки с малых беспилотных летательных аппаратов (БПЛА). Изложен способ оперативной оценки качества аэрофотосъемки с БПЛА.

West-Siberian branch «Goszemkadastrsyomka» - VISHAGI 4 Prospect Mira, Omsk, 644080, Russian Federation

CALCULATION OF THE PARAMETERS AND EVALUATION OF QUALITY WITH UAV AERIAL PHOTOGRAPHY

The article describes the features of calculation of parameters from aerial surveys of small unmanned aerial vehicles (UAVs). Described method for rapid assessment of the quality of aerial photography from unmanned aircraft.

Проведение работ по инвентаризации земель и объектов недвижимости, подготовка документов для постановки на государственный кадастровый учёт и государственная регистрация прав подразумевает выполнение комплекса картографо-геодезических, землеустроительных и кадастровых работ. Для поддержания информации на современном уровне необходим системный мониторинг. Для локального обновления картографического материала интенсивно используемых земель целесообразно использовать беспилотно-пилотируемые летательные аппараты. В Западно-Сибирском филиале предприятия “Госземкадастрсъемка” - ВИСХАГИ разработано несколько летательных аппаратов и все они попадают в весовую категорию до 3,5 кг.

Несмотря на всю простоту любительской съемки с БПЛА, при проведении аэрофотосъемочных работ для целей картографирования возникает ряд проблем, связанных с выбором фотокамеры, устанавливаемой на летательный аппарат, расчетом параметров аэрофотосъемки и оперативной оценке качества материалов аэрофотосъемки.

Выбор фотокамер для целей аэрофотосъемки основан на анализе следующих характеристик: разрешающей способности снимков, физическом размере матрицы, величине угла захвата, веса камеры и её стоимости. Нами была разработана методика присвоения оценочных баллов по каждой характеристике фотоаппарата. Лучшим фотоаппаратом считался фотоаппарат, набравший большую сумму балов. Было исследовано более десяти цифровых камер подходящих для установки на БПЛА из модельного ряда весовой категории до 3,5 кг.

По результатам исследования, наилучшими для целей аэрофотосъемки признаны камеры Canon IXUS-980IS, Pentax Optio-A30 и Sony DSC-W300, их основные характеристики представлены в табл. 1.

Таблица 1 Основные характеристики выбранных фотокамер

Название фотокамеры Длина матрицы, пкс Ширина матрицы, пкс Размер матрицы, " f экв 35 мм кадру, мм Вес, г

Canon IXUS-980IS 4416 3312 1/1.7 36.0 160

Sony DSC-W300 4224 3168 1/1.7 35.0 156

Pentax OptioA30 3648 2736 1/1.8 38.0 150

В настоящее время на беспилотных летательных аппаратах ЗападноСибирского филиала “Госземкадастрсъемка” - ВИСХАГИ установлена фотокамера Pentax Optio-A30. Камера хорошо показала себя во время производственной и экспериментальной аэрофотосъемки. Постоянно развивающаяся технология аэрофотосъемки с БПЛА требует приобретения новых фотокамер и совершенствования методики их выбора.

Расчет параметров аэрофотосъемки изложен в соответствующих нормативных документах. Аэрофотосъемка с малых беспилотных летательных аппаратов имеет ряд особенностей. Превышение допустимых углов наклона снимков, несоблюдение прямолинейности траектории полета, для обеспечения необходимого перекрытия между снимками высокая частота фотографирования и как следствие избыток кадров. Нами была разработана методика расчета следующих параметров аэрофотосъемки с БПЛА: высоты фотографирования, расстояния между маршрутами и между центрами фотографирования на маршруте.

Высота аэрофотосъемки зависит от масштаба создаваемого фотоплана. Величина крайнего пикселя снимка на местности не должна превышать 0.07 мм в масштабе создаваемого фотоплана. Например при создании фотоплана

масштаба 1: 2000 величина пикселя на местности d не должна превышать 0.14 м. Расчет разрешающей способности снимка следует производить для пикселей наиболее удаленных от центра кадра. Схема связи размера крайнего пикселя снимка с местностью показана на рисунке.

На рисунке: f - фокусное расстояние камеры в эквиваленте для 35 мм кадра;

L - длина половины диагонали матрицы, для 35 мм кадра она составит 21.6 мм;

H - высота фотографирования во время АФС;

Рис. 1. Связь размера пикселя снимка с местностью

D - длина половины диагонали снимка на местности.

Из рисунка следует:

d ■ cos(у-Р)

S = ; ; (1) sin у

Hmx = S ■ cos Р; (2)

Расчет максимально допустимой высоты аэрофотосъемки выполняется по формуле (2), где угол в зависит от индивидуальных параметров используемой фотокамеры и может быть рассчитан исходя из величины фокусного расстояния эквивалентного 35 мм кадру.

В зависимости от точности GPS навигации и особенностей пилотирования БПЛА могут быть достигнуты следующие параметры выдерживания самолета на маршруте:

Поперечное смещение от оси маршрута ± 10 м;

Удержание БПЛА на запроектированной высоте ± 15 м;

Расстояние от запроектированного центра фотографирования до точки срабатывания затвора фотоаппарата ± 5 м;

Изменение угла крена БПЛА на маршруте между двумя снимками

Изменение угла тангажа БПЛА на маршруте между двумя снимками

Приведенные параметры полета БПЛА были получены в результате постобработки множества материалов производственной и экспериментальной аэрофотосъемки.

Для расчета расстояния между маршрутами обеспечивающего 30 % поперечное перекрытие при идеальных условиях по формуле (3) вычисляется половина поперечного угла захвата камеры, где Ln^epen - половина ширины 35 мм пленки и составляет 12 мм:

р" = arcctg (------); (3)

Высота полета с учетом погрешности барометрического датчика рассчитывается по формуле (4):

H = H - 20 м (4)

пол max ? V /

Половина ширины захвата местности камерой вычисляется по формуле (5):

D = Hпол ■ tgP"; (5)

Расстояние между маршрутами в идеальных условиях рассчитывается по формуле (6):

где к = 0,7, для обеспечения 30 % поперечного перекрытия снимков.

Для обеспечения надежного сплошного покрытия земной поверхности снимками необходимо учесть максимальные отклонения БПЛА от запроектированного маршрута. Минимальное значение половины ширины захвата местности во время аэрофотосъемки с учетом совокупности погрешностей навигационных данных и пилотирования летательного аппарата вычисляется по формуле (7):

Рш1п = (Нпоп -15м) щ(0- 5°) -10м; (7)

Предельное отклонение между двумя маршрутами составит:

8Р = 2 (Р - Этп); (8)

Расстояние между маршрутами с учетом поперечного смешения БПЛА относительно оси маршрута, удерживания высоты полета и углов наклона камеры, вычисляется по формуле (9):

К = К - §Р ■ (9)

попереч ид? V /

По формулам (1)-(9) вычисляется высота полета БПЛА для выбранных фотоаппаратов и расстояние между маршрутами при создании фотопланов масштаба 1: 2 000. Полученные данные представлены в табл. 2.

Таблица 2 Расчет высоты фотографирования и расстояния между

маршрутами

Название фотокамеры Hmax, м ^ м м Dmin, м м o" Ô Rпопереч, м

Canon IXUS-980IS 520 500 233 106 122 112

Sony DSC-W300 484 464 223 101 116 107

Pentax 0ptio-A30 467 447 198 86 110 87

Расстояние между центрами фотографирования на маршруте рассчитывается по аналогии с расстоянием между маршрутами. По формуле (3) вычисляется половина продольного угла захвата камеры, где L - половина длины 35 мм пленки и составляет 18 мм. Расстояние между центрами фотографирования в идеальных условиях рассчитывается по формуле (6), для обеспечения 60% продольного перекрытия снимков коэффициент к будет равен 0,4. По формуле (7) вычисляется минимальное значение половины длины захвата местности во время АФС. Предельное отклонение расстояния между снимками от рассчитанного вычисляется по формуле (8). Расстояние между центрами фотографирования с учетом погрешности навигационных координат, удерживания высоты полета и углов наклона камеры, рассчитывается по формуле (10):

Результаты полученные в ходе вычисления расстояния между центрами фотографирования вдоль маршрута приведены в табл. 3.

Таблица 3 Расчет расстояния между центрами фотографирования

Название фотокамеры ^ м Dmin, м SD, м Rпрод, м

Canon IXUS-980IS 200 207 87 113

Pentax 0ptio-A30 191 197 83 108

Sony DSC-W300 169 173 78 91

По данным табл. 2 и 3 на примере фотоаппарата Сапоп 1ХШ-98018 составлена карточка параметров аэрофотосъемки с БПЛА для целей получения фотоплана масштаба 1: 2 000._________________________________

Карточка параметров АФС с БПЛА для целей картографирования

Фотокамера: Canon IXUS-980IS

Масштаб АФС: 1: 2 000

Высота полета при АФС: 500 м

Расстояние между маршрутам: ll0 м

Расстояние между центрами фотографирования на маршруте: ll0 м

Допустимое отклонение от оси маршрута: ± l0 м

Допустимое отклонение от запроектированной высоты АФС: ± l5 м

Расстояние срабатывания затвора фотоаппарата от намеченных центров фотографирования вдоль оси маршрута: ± 5 м

Допустимое изменение угла крена БПЛА на маршруте между двумя снимками: 10о

Допустимое изменение угла тангажа БПЛА на маршруте между двумя снимками: 60

Расчет параметров аэрофотосъемки очень важный этап подготовительных работ. Правильно рассчитанные параметры полета позволяют увеличить площадь покрываемую аэрофотосъемкой за один полет и повысить качество материалов аэрофотосъемки.

Для оперативной оценки качества выполнения аэрофотосъемки на нашем предприятии было разработано и внедрено в производство программное обеспечение в виде приложения *.тЬх на базе Маріпіо. Программа позволяет проектировать маршруты согласно рассчитанным параметрам аэрофотосъемки. По полученным данным с борта летательного аппарата в реальном времени строится фактическая траектория полета. В момент прохождения БПЛА над точкой запроектированного центра фотографирования в автоматическом, либо ручном режиме подается команда на срабатывание затвора камеры. По высоте летательного аппарата и его

ориентации в пространстве в момент фотографирования строится условная рамка снимка, по которым можно оперативно оценить покрытие заданной территории аэрофотосъемкой, и, при необходимости, принять решение о повторном прохождении над проблемными участками.

Разработанная методика проектирования аэрофотосъемки с БПЛА позволила существенно сократить время выполнения аэрофотосъемочных работ и повысить качество материалов.

Данные съёмки с БПЛА, показанные на этой странице, предоставлены . Технология обработки материалов съемки в ПО Agisoft PhotoScan предоставлена ООО "Плаз" .

Применение беспилотных летательных аппаратов (БПЛА) позволяет существенно снизить затраты на производство аэрофотосъемочных работ. С точки зрения традиционной фотограмметрии качество подобной съемки вероятнее всего будет оценено, как неприемлемое, поскольку на БПЛА, как правило, устанавливаются камеры бытового сегмента, не используется гиростабилизирующая аппаратура, при съемке нередки отклонения оптических осей от вертикали в несколько градусов, что значительно усложняет процесс первичной обработки снимков. Однако для современного фотограмметрического программного обеспечения эти недостатки не представляют значительных проблем. Более того, развитие цифровых методов фотограмметрической обработки уже привело к появлению программ и программных комплексов, способных обрабатывать даже такие "некачественные" данные аэрофотосъемки в высокоавтоматизированном режиме, при минимальном участии оператора.

Рассмотрим технологическую цепочку получения топографической карты с использованием следующих компонентов:

  • БПЛА для выполнения аэрофотосъемки;
  • ПО Agisoft PhotoScan в качестве инструмента обработки материалов съемки;
  • инструментарий ГИС Панорама для векторизации ортофотопланов и получения топокарт.

Аэрофотосъемка с использованием БПЛА

В техническом плане процесс аэрофотосъемки с использованием БПЛА состоит из трех этапов: подготовительного, собственно съемки, и постобработки полученных данных.

Подготовительный этап
На данном этапе производится:

  • изучение имеющихся материалов; формирование или сбор требований к материалам, которые нужно получить по результатам съемки – тип и масштаб карты, границы объекта съемки; приведение их в технические требования к съемочным материалам: разрешение, координаты контура участка съемки, перекрытие снимков, точность определения координат центров фотографирования, требования к наземной опорной сети (при комбинированной съемке, например, когда привязка фотоплана производится по точкам наземной опорной сети, требования к точности определения КЦФ вообще не предъявляются);
  • формирование полетного задания для БПЛА. Выполняется программой – планировщиком полета, входящей в состав комплекса. Оператор должен выбрать используемый комплекс БПЛА (в случае, если программа позволяет работать с несколькими конфигурациями БПЛА и фотоаппаратуры), задать на карте контур участка съемки и примерное положение стартовой площадки, установить требуемое разрешение и перекрытие, после чего программа рассчитывает план полета и проверяет его выполнимость.

Выполнение аэрофотосъемки
По прибытии на стартовую площадку производится:

  • уточнение положения стартовой площадки, задание точки возвращения и ввод данных о скорости и направлении ветра на рабочей высоте, если таковые известны;
  • автоматическое уточнение плана полета и повторная проверка его выполнимости;
  • старт БПЛА с пускового устройства;
  • выполнение съемки в автоматическом режиме;
  • посадка.

Выполнение съемки местности с использованием БПЛА

При использовании комбинированного способа выполняется определение координат опорных точек, выбранных для привязки.

Постобработка данных
Заключается в:

  • снятии данных (фотоснимки и журнал полета) с бортовых носителей информации;
  • визуальной оценке качества фотографий и отбраковке "технических" кадров, если такие записаны. Под техническими кадрами понимаются снимки, сделанные вне пределов участка съемки - при подлете к участку, на дугах разворота и т.п.;
  • генерация файла привязки центров фотографирования. В ходе полета аппаратура управления ведет запись различных параметров, среди которых – координаты, скорость и параметры ориентирования летательного аппарата. После окончания съемки из файла журнала полета необходимо выбрать координаты, соответствующие моментам фотографирования, и приписать их конкретным снимкам. Такая обработка, как правило, выполняется в той же программе – планировщике полетного задания.

В соответствии с требованиями отраслевых инструкций , для получения топокарт масштаба 1:2000 необходима фотооснова, имеющая разрешение 15 см/пикс и имеющая погрешность определения координат в каждой точке не выше 60 см. Такое разрешение легко обеспечивается при съемке с БПЛА с использованием компактных фотоаппаратов. Например, съемка камерами типа Canon S-95 или Sony NEX-5 (с объективом SEL30M35) с высоты порядка 200-300 м дает снимки, имеющие разрешение 5 см/пикс.

Привязка требуемой точности достигается измерением координат центров фотографирования с использованием высокоточных GNSS-приемников в пределах референцной сети, или задействованием наземной опорной сети, точки которой привязаны с погрешностью не выше 30 см.

Обработка аэрофотоснимков в ПО Agisoft PhotoScan

Программа Agisoft PhotoScan - универсальный инструмент для генерации трехмерных моделей поверхностей объектов съемки по фотоизображениям этих объектов. PhotoScan с успехом применяется как для построения моделей предметов и объектов разных масштабов – от миниатюрных археологических артефактов до крупных зданий и сооружений, так и для построения моделей местности по данным аэрофотосъемки и генерации матриц высот и ортофотопланов, построенных на основе этих моделей. Обработка данных в PhotoScan предельно автоматизирована – на оператора возложены лишь функции контроля и управления режимами работы программы.

Построение и привязка модели местности в программе состоит из трех основных этапов:

  • построение грубой модели. На этом этапе производится автоматическое определение общих точек на перекрывающихся снимках, восстановление проектирующих лучей, определение координат центров фотографирования и элементов взаимного ориентирования снимков, расчет параметров, описывающих оптическую систему (дисторсия, коэффициент ассиметрии, положение центральной точки). Все эти расчеты выполняются в программе за одну операцию;
  • привязка полученной модели к внешней (геодезической, географической) системе координат и уравнивание всех параметров системы – координат центров фотографирования и наземных опорных точек, углов ориентирования снимков, параметров оптической системы с использованием параметрического метода уравнивания. В качестве весовых коэффициентов для уравнивания выступают погрешности определения координат точек съемки (центров фотографирования), определения координат точек наземной опорной сети, дешифрирования и маркирования опорных точек на снимках;
  • построение полигональной модели поверхности местности на основе определенных на предыдущем этапе параметров. В программе реализован экспресс-способ, заключающийся в триангуляции только общих точек, полученных на первом этапе, и более точные способы обработки, заключающиеся в определении пространственного положения для каждого пиксела изображения (в зависимости от заданной степени детализации обрабатывается каждый первый, каждый четвертый, каждый шестнадцатый, и т. д. – всего пять возможных уровней).

Затем полученная модель используется для генерации ортофотопланов и матриц высот.

С точки зрения оператора процесс работы с программой выглядит следующим образом:

  • Выбор системы координат и загрузка данных привязки центров фотографирования
  • Формирование точечной модели поверхности Земли
  • При наличии наземной опорной сети – установка отметок опорных точек на фотоснимках и загрузка координат точек опорной сети
  • Оптимизация модели (уравнивание параметров привязки)
  • Генерация полигональной модели поверхности Земли
  • Экспорт данных – ортофотоплан, матрица высот
  • Приведенные скриншоты окна программы наглядно иллюстрируют процесс обработки материалов аэрофотосъемки на примере съемки полигона "Заокский", материалы которой предоставлены ОАО "Газпром космические системы" . Обработка данных материалов на ПК, оснащенном 4-хядерным процессором Intel Core i7 2600K и имеющем 16 Гб оперативной памяти, заняла порядка трех-четырех часов – от загрузки фотографий до экспорта ортофотоплана и цифровой модели местности в формате GeoTiff. Из этого времени около одного часа ушло на дешифирование и маркирование опорных точек – ручной труд оператора, а остальное время заняло выполнение расчетов.

    Имеется возможность формирования пакетного задания на обработку. Загрузив исходные снимки, можно сразу указать параметры для каждого из этапов, и программа самостоятельно выполнит весь цикл обработки.

    Непосредственно в графическом интерфейсе программы можно производить базовые измерения на полученной модели - измерять расстояния, площадь поверхности и объем модели.

    Развитый API позволяет создавать скрипты на языке Python, управляющие обработкой и отображением данных, что позволяет еще более автоматизировать решение типовых задач.

    1) Фотографии загружены. В свойствах проекта видно, что проект состоит из блоков (chunks) – обрабатываемых независимо частей проекта со своими фотографиями, моделью, СК, параметрами калибровки оптики и т.п. В данном проекте - один блок, состоящий из 415 фотографий. Метки NA (not aligned) рядом с фотографиями показывают, что положение этих снимков в пространстве модели еще не известно.

    2) Выбор системы координат

    4) Метки в форме синих шариков отображают взаимное расположение точек съемки (КЦФ), после уравнивания они будут заменены метками другого вида, соответствующим положению плоскостей кадров

    5) После выполнения первого этапа обработки – первичного уравнивания и построения точечной модели, формируется облако точек, описывающее модель, и набор параметров взаимного ориентирования фотоснимков. Положение выбранного снимка отображается в области просмотра модели. Снимки, которые не удалось уравнять, по-прежнему отображаются сферами/шариками, и в списке фотографий отмечены меткой NA (not aligned). В данном проекте таких нет

    6) Установка маркеров (меток опорных точек). Если известно положение маркеров на снимках (в системе координат снимка), можно просто импортировать эти данные в PhotoScan. Если маркеры еще не дешифрированы, придется задавать их расположение прямо в программе. Для каждого маркера достаточно отметить их положение на одном-двух снимках, и PhotoScan автоматически определяет их положение на других снимках, выделяя снимки, на которых присутствует выбранный маркер, специальными метками. На каждом снимке можно подтвердить итли уточнить автоматически выбранное положение маркера

    7) Маркеры расставлены. Можно выполнять построение модели местности

    8) Модель готова. Ее можно экспортировать как матрицу высот (цифровую модель местности) и сформировать на основе этой модели ортофотоплан местности.

    9) В завершение можно построить текстуру модели и рассматривать ее прямо в программе.

    10) Внутреннее представление модели поверхности Землки в PhotoScan - сеть триангуляции Делоне, TIN модель

    11) Ортофотоплан всего участка съемки.

    12) Цифровая модель местности всего участка съемки

    Получение карт на основе ортофотопланов в ГИС Панорама

    Комплекс автоматизированного дешифрирования и векторизации по данным ДЗЗ, разработанный на базе ГИС "Панорама" , предназначен для автоматической векторизации линейных и площадных объектов по цветным растровым изображениям земной поверхности.

    Процесс автоматической векторизации состоит из следующих основных этапов:

    • предварительная обработка растра;
    • классификация;
    • обработка растра классификации;
    • преобразование растра в вектор;
    • векторная обработка.

    Предварительная обработка является необязательным этапом, включает масштабирование и фильтрацию растра. Масштабирование позволяет значительно ускорить обработку при избыточном разрешении снимка. Фильтрация уменьшает шумы изображения, что положительно влияет на результаты распознавания.

    Классификация – процесс определения принадлежности отдельных пикселей исходного растра тому или иному распознаваемому объекту. Классификация состоит из трех основных этапов. На первом этапе пользователь определяет обучающие выборки – указывает области на снимке, однозначно принадлежащие распознаваемым объектам. Затем происходит обучение классификатора – процесс выявления и запоминания статистических дешифровочных характеристик, присущих распознаваемым объектам. Эти данные используются собственно в классификации - определения принадлежности отдельных пикселей исходного растра распознаваемому объекту.

    Вычисление статистических дешифровочных характеристик при обучении и классификации выполняется для скользящего окна. При обучении окно перемещается в пределах обучающих выборок, при классификации на всем остальном снимке. В качестве статистических дешифровочных характеристик используется спектральные (средний цвет) и текстурные характеристики (контраст, энергия, корреляция).

    К загруженному ортофотоплану в формате GeoTiff применяется технология классификации и распознования

    Результатом классификации является растр классификации – растр принадлежности пикселей исходного растра тому или иному распознаваемому объекту. Растр классификации содержит много шумов – неправильно классифицированных пикселей. Их можно отфильтровать исходя из предположения, что плотность расположения неправильно классифицированных пикселей меньше правильно классифицированных.

    На следующем этапе производиться фильтрация лишней информации, ее сглаживание и перевод с в линейный и площадной вид

    Для этого используются морфологические операции - изменение бинарного состояния пикселя на основе анализа состояния его соседей. К таким операциям относятся:

    • эрозия – замена на ноль единичных пикселей, если рядом есть хоть один нулевой пиксель;
    • наращивание – замена на единицу нулевого пикселя, если рядом есть хоть один единичный пиксель;
    • удаление небольших областей – замена восьмисвязных локальных групп единичных пикселей на нули, если количество пикселей меньше допуска;
    • заливка небольших дырок – замена восьмисвязных локальных групп нулевых пикселей на единицы, если количество пикселей меньше допуска;

    После обработки растр классификации преобразуется в набор векторных объектов – линий или площадей. В процессе преобразования в линии создаются непересекающиеся линейные объекты. При преобразовании в площади создаются площадные объекты, имеющие общие части контура. На окончательном этапе распознанные объекты объединяются или удаляются на основе анализа их взаимного расположения. Объединенная сеть объектов совместно сглаживается и фильтруется перед сохранением в создаваемую карту.

    Результат автоматизированного дешифрирования и векторизации ортофотопланов можно посмотреть и отредактировать в ГИС "Панорама"

    При обновлении цифровых карт имеющиеся контура объектов используются для автоматического обучения программы дешифрирования и векторизации. При необходимости оператор может выбрать отдельные участки, которые попадают на наиболее характерные изображения дешифрируемых объектов.

    Программа сопоставляет контура объектов и соответствующие им области снимков, запоминает свойства изображения и выполняет уточнение контуров объектов по реальным границам областей с подобными свойствами изображения. При этом создаются и новые объекты в тех местах снимка, где будут найдены близкие по изобразительным свойствам области.

    Литература
    1. Инструкция по фотограмметрическим работам при создании цифровых топографических карт и планов ГКИНП (ГНТА)-02-036-02. Москва, ЦНИИГАиК, 2002


    Владельцы патента RU 2644630:

    Изобретение относится к устройствам для получения изображений, специально предназначенным для фотографической съемки местности. Заявленный способ аэрофотосъемки наземных объектов в условиях недостаточной освещенности (ночью) с помощью беспилотных воздушных судов предусматривает использование беспилотного воздушного комплекса (БВК), включающего в себя два совершающих совместный полет беспилотных воздушных судна (БВС) с разнородными синхронно работающими нагрузками: БВС-1 - с цифровой фотокамерой; БВС-2 - с фотовспышкой. Технический результат заключается в обеспечении сохранения продолжительности потенциально полезного полетного времени БВС с цифровой фотокамерой (БВС-1), увеличении высоты полета, с которой проводится фотосъемка, в повышении достоверности дешифрирования фотоснимков за счет использования демаскирующих признаков объектов - теней объектов с камуфлированной раскраской (при условии совпадения в видимом диапазоне величин альбедо объектов и подстилающей поверхности), в избежании возможности возникновения засветки приемника излучения (матрицы) цифровой фотокамеры отраженным в обратном направлении излучением фотовспышки, вследствие его рассеяния на аэрозолях и гидрометеорах, в обеспечении возможности применении его как для плановой, так и перспективной аэрофотосъемки. 5 ил.

    Изобретение относится к устройствам для получения изображений, специально предназначенным для фотографической съемки местности.

    Известно достаточно много типов беспилотных воздушных судов (БВС), применяющихся для решения различных прикладных задач путем ведения аэрофотосъемки и видеонаблюдения подстилающей поверхности с помощью размещенной на их борту оптико-электронной аппаратурый видимого диапазона (фото- и телекамер) и (или) длинноволнового инфракрасного диапазона (тепловизоров). Среди них можно выделить БВС, разработанные в интересах проведения аэрофотосъемки, например, описанные в статье (Зинченко О.Н. Беспилотный летательный аппарат: применение в целях аэрофотосъемки для картографирования / О.Н. Зинченко. // (www.racurs.ru/www_download/articles/UAV_1.pdf)).

    Как правило, аэрофотосъемка и видеонаблюдение подстилающей поверхности в условиях недостаточной освещенности (ночью) осуществляется с использованием оптико-электронной аппаратуры длинноволнового инфракрасного диапазона (тепловизоров). Недостатками этого способа аэрофотосъемки и видеонаблюдения являются:

    Невозможность получения контрастных изображений объектов и (или) участков подстилающей поверхности, отличающихся от основного типа подстилающей поверхности величиной альбедо в видимом диапазоне, в случае, если все они характеризуются одинаковыми значениями температуры и одинаковыми излучательными способностями в длинноволновом инфракрасном диапазоне;

    Возможность получения только монохромных или псевдоцветовых изображений объектов и подстилающей поверхности, что существенно затрудняет, а иногда делает невозможным их дешифрирование (в случае отсутствия базы эталонных изображений искомых объектов или отсутствия достаточного опыта у оператора).

    Наиболее близким к заявляемому техническому решению является способ аэрофотосъемки подстилающей поверхности в условиях недостаточной освещенности (ночью) с помощью БВС семейства «Птеро» (Валиев А.В. Опыт применения БЛА «Птеро-Е» для поиска мест аварии на ЛЭП / А.В. Валиев // Кабель-news. - 2009. - №11. - С. 20-22.; Валиев А. Возможности диагностики состояния ВЛ с использованием беспилотной авиационной системы Птеро-G0 / А. Валиев // ЭЛЕКТРОЭНЕРГИЯ. Передача и распределение. - 2015. - №3. - С. 72-75.; Зинченко О.Н. Беспилотный летательный аппарат: применение в целях аэрофотосъемки для картографирования / О.Н. Зинченко. // (www.racurs.ru/www_download/articles/UAV_1.pdf)), заключающийся в том, что дополнительно к основной нагрузке (цифровой фотокамере) БВС оснащается фотовспышкой, работа которой синхронизирована с электронным затвором цифровой фотокамеры.

    Недостатки данного способа аэрофотосъемки заключаются в:

    Необходимости поиска компромисса между высотой полета БВС, зависящей от мощности фотовспышки (определяемой достаточной для фотосъемки величиной освещенности подстилающей поверхности) и потенциально полезным полетным временем БВС, зависящим от величины потребляемой энергии фотовспышкой от бортового источника питания (аккумуляторной батареи), так как:

    а) малые высоты полета БВС приводят к появлению «смазов» на фотоснимках, делая их непригодными для поиска изображений малоразмерных объектов или неоднородностей подстилающей поверхности ввиду того, что диапазон возможных скоростей полета БВС характеризуется некоторым минимальным значением, при котором еще возможен стабильный, управляемый полет. Для получения «несмазанных» фотоснимков подстилающей поверхности при съемке с БВС (фиг. 1) перемещение поля зрения фотокамеры за время экспонирования не должно превышать средней линейной величины протяженности элементарного участка подстилающей поверхности в центре кадра , то есть должно выполняться условие:

    где V БВС - скорость полета БВС;

    t э - время экспонирования фотокамеры;

    Протяженность участка подстилающей поверхности (в направлении полета БВС), изображение которого формируется на половине кадра матрицы;

    N v - размерность матрицы фотокамеры (в направлении полета БВС);

    h - высота полета БВС;

    Протяженность элементарного участка подстилающей поверхности (в направлении полета БВС), изображение которого формируется одним субпикселем матрицы фотокамеры;

    α v - величина углового поля зрения фотокамеры (в направлении полета БВС);

    б) исходя из выражения для оценки величины энергетической освещенности подстилающей поверхности E пп, создаваемой размещенной на борту БВС фотовспышкой:

    где I вс =Φ вс /Ω - сила света, создаваемая импульсной лампой фотовспышки;

    h - высота полета БВС;

    Φ вс =Q вс /t вс - световой поток;

    Ω=2π(1-cos 0,5α) - телесный угол, образованный вращением плоского угла α, в котором распространяется световой поток от вспышки;

    Q вс - энергии вспышки, создаваемая импульсной лампой фотовспышки;

    t вс - длительность вспышки,

    можно сделать вывод, что увеличение высоты полета БВС от некоторого значения, при котором фотовспышкой создается величина освещенности подстилающей поверхности, достаточная для фотосъемки, например, в 2 раза, ведет к необходимости увеличения энергии фотовспышки в 4 раза. Вследствие этого возрастает величина потребляемой фотовспышкой энергии от бортового источника питания (аккумуляторной батареи), чтобы обеспечить величину освещенности подстилающей поверхности, достаточную для фотосъемки. Следовательно, потенциально полезное полетное время БВС уменьшится ввиду более быстрого разряда аккумуляторной батареи;

    Относительно малом расстоянии между оптическими системами цифровой фотокамеры и фотовспышки (определяемом геометрическими размерами БВС и особенностями их конструкции), что приводит к:

    а) практически полному отсутствию на фотоснимках теней от объектов, имеющих незначительное превышение над уровнем подстилающей поверхности, затрудняющему обнаружение изображений объектов с камуфлированной раскраской (при условии совпадения величин альбедо объектов и подстилающей поверхности в видимом диапазоне);

    б) возможности возникновения засветки приемника излучения (матрицы) цифровой фотокамеры отраженным в обратном направлении излучением фотовспышки вследствие его рассеяния на аэрозолях и гидрометеорах;

    Возможности его использования, в основном, при проведении плановой аэрофотосъемки, обусловленной тем, что большинство подстилающих поверхностей характеризуются квазиортотропным характером отражения (фиг. 2) (Тимофеев Ю.М., Васильев А.В. Теоретические основы атмосферной оптики [Текст] / Тимофеев Ю.М., Васильев А.В. - СПб.: Наука, 2003. - 474 с. С. 248), так как при проведении перспективной аэрофотосъемки большая часть падающего излучения переотражается не в направлении фотокамеры: следовательно, при прочих равных условиях величина высоты, с которой получены фотоснимки при плановой аэрофотосъемке, будет превосходить величину наклонной дальности, при которой могут быть получены фотоснимки такого же качества при перспективной аэрофотосъемке.

    Задачей, на решение которой направлено заявляемое изобретение, является разработка свободного от указанных недостатков способа аэрофотосъемки наземных объектов в условиях недостаточной освещенности с помощью БВС.

    Техническим результатом, который достигается при решении данной задачи, является: возможность осуществления аэрофотосъемки наземных объектов с больших, чем у прототипа (100-150 м), высот; увеличение продолжительности потенциально полезного полетного времени БВС, осуществляющего аэрофотосъемку в условиях недостаточной видимости (ночью); повышение достоверности дешифрирования фотоснимков за счет использования демаскирующих признаков объектов - теней; увеличение наклонной дальности перспективной аэрофотосъемки, при которой могут быть получены фотоснимки такого же качества, как и при плановой аэрофотосъемке.

    Данная задача решается за счет того, что часть полезной нагрузки БВС (прототипа), включающую в себя цифровую фотокамеру 1 и фотовспышку 2, разделяют и размешают (фиг. 3):

    На БВС-1 - цифровую фотокамеру 1;

    На БВС-2 - фотовспышку 2,

    в результате чего получают беспилотный воздушный комплекс (БВК), включающий в себя два БВС с размещенными на их бортах разнородными нагрузками, совместное использование которых обеспечивает проведение аэрофотосъемки наземных объектов в условиях недостаточной освещенности (ночью).

    Принцип работы изобретения (фиг. 4).

    Задают высоту полета БВС-1 h 1 , исключающую появление «смазов» на фотоснимках. Задают высоту полета БВС-2 h 2 , обеспечивающую создание фотовспышкой необходимый для аэрофотосъемки съемки уровень освещенности подстилающей поверхности (с учетом величины альбедо подстилающей поверхности и планируемой высоты полета БВС-1 h 1).

    При этом величина h 1 может существенно превосходить величину h 2 , так как при выполнении условия существенного превосходства значением высоты полета h 1 значения фокусного расстояние объектива ƒ":

    справедливо выражение, связывающее освещенность в плоскости матрицы цифровой камеры Е м с величиной освещенности подстилающей поверхности Е пп (Князев М.Г., Бондаренко А.В., Докучаев И.В. Расчет пороговых значений потока излучения и освещенности для ПЗС матриц Kodak KAI-1003M, Kodak KAI-1020 и Philips FTF3020M / М.Г. Князев, А.В. Бондаренко, И.В. Докучаев // (www.rastr.net/Download/Doc/KAI1003_KAI1020_FTF3020_v2.pdf)):

    где τ атм - коэффициент пропускания атмосферы на дистанции наблюдения h 1 ,

    τ об - коэффициент пропускания объектива цифровой камеры;

    ρ пп - альбедо подстилающей поверхности;

    k - диафрагменное число объектива цифровой камеры,

    из которого следует, что освещенность в плоскости матрицы цифровой камеры Е м не зависит от величины h 1 - высоты полета БВС-1.

    С помощью системы управления БВК в полете задают такое взаимное расположение БВС-1 и БВС-2 в пространстве, при котором обеспечивается их нахождение в одной плоскости, проходящей через оптическую ось цифровой фотокамеры (O 1), оптическую ось фотовспышки (O 2) и нормаль N к подстилающей поверхности в точке пересечения этих осей, а также обеспечивают синхронизацию работы затвора цифровой фотокамеры и фотовспышки.

    Величины углов наклона оптических осей цифровой фотокамеры (γ) и фотовспышки (-γ) относительно планеров, одинаковые по абсолютной величине, устанавливают перед запуском БВК или задают в процессе полета с помощью системы управления нагрузками БВК. При малых величинах углов наклона оптических осей цифровой фотокамеры (γ) и фотовспышки (-γ) осуществляют плановую аэрофотосъемку, при больших - перспективную: в обоих случаях на полученных фотоснимках присутствует изображение тени объекта (Об) (фиг. 5).

    Таким образом, использование данного способа аэрофотосъемки наземных объектов с помощью БВК в условиях недостаточной освещенности (ночью) позволяет:

    Увеличить высоту полета, с которой проводится фотосъемка;

    Повысить достоверность дешифрирования фотоснимков за счет использования демаскирующих признаков объектов - теней объектов с камуфлированной раскраской (при условии совпадения в видимом диапазоне величин альбедо объектов и подстилающей поверхности);

    Избежать возможности возникновения засветки приемника излучения (матрицы) цифровой фотокамеры отраженным в обратном направлении излучением фотовспышки вследствие его рассеяния на аэрозолях и гидрометеорах;

    Применять его как для плановой, так и перспективной аэрофотосъемки.

    Способ аэрофотосъемки наземных объектов в условиях недостаточной освещенности (ночью) с помощью беспилотных воздушных судов, отличающийся тем, что предусматривает использование беспилотного воздушного комплекса (БВК), включающего в себя два совершающих совместный полет беспилотных воздушных судна (БВС) с разнородными синхронно работающими нагрузками: БВС-1 - с цифровой фотокамерой; БВС-2 - с фотовспышкой.

    Похожие патенты:

    Изобретение относится к способам коррекции изображений, связанных со сложной траекторией движения носителя сенсора относительно исследуемой поверхности, например, при авиасъемке.

    Изобретение относится к приборам, используемым в горной промышленности для съемки сечения выработанного пространства. Устройство для съемки сечений горных камерных выработок состоит из пластины, лазерных дальномеров, закрепленных на пластине и соединенных между собой и с механизмом регулирования, а также трубы, расположенной выше центра тяжести пластины и навешанной на горизонтальную направляющую из троса.

    Изобретение относится к лесному хозяйству и может быть использовано при оценке динамики глобальных климатических изменений в Арктике. Согласно способу проводят спектрометрические измерения в переходной зоне 69°…70° с.ш., содержащей тестовые участки в диапазоне 0,55…0,68 мкм и 0,73…1,1 мкм, а также синхронные радиометрические измерения в диапазоне СВЧ на длине волны ~30 см.

    Фотоприемник предназначен для получения единых цифровых фотоизображений мозаичного типа. Фотоприемник включает оптическую систему, содержащую, по меньшей мере, два объектива, и расположенный на ее фокальной поверхности фоточувствительный прибор в виде соответствующих числу объективов групп цифровых фоточувствительных матриц.

    Способ включает фотографирование поверхности несколькими оптико-электронными фотоприемниками с частичным перекрытием получаемых субкадров, образующих кадр центральной проекции в виде полосы, ориентированной длинной стороной поперек направления движения носителя, получение кадров по мере движения носителя с их частичным перекрытием между собой и последующее объединение кадров в единое изображение.

    Изобретение относится к устройствам для получения изображений, специально предназначенным для фотографической съемки местности. Заявленный способ аэрофотосъемки наземных объектов в условиях недостаточной освещенности с помощью беспилотных воздушных судов предусматривает использование беспилотного воздушного комплекса, включающего в себя два совершающих совместный полет беспилотных воздушных судна с разнородными синхронно работающими нагрузками: БВС-1 - с цифровой фотокамерой; БВС-2 - с фотовспышкой. Технический результат заключается в обеспечении сохранения продолжительности потенциально полезного полетного времени БВС с цифровой фотокамерой, увеличении высоты полета, с которой проводится фотосъемка, в повышении достоверности дешифрирования фотоснимков за счет использования демаскирующих признаков объектов - теней объектов с камуфлированной раскраской, в избежании возможности возникновения засветки приемника излучения цифровой фотокамеры отраженным в обратном направлении излучением фотовспышки, вследствие его рассеяния на аэрозолях и гидрометеорах, в обеспечении возможности применении его как для плановой, так и перспективной аэрофотосъемки. 5 ил.

    Я геодезист, коллеги из КРОК попросили меня рассказать про то, как мы переделываем дроны, как программируем полёт и как всё потом обрабатываем, превращая снимки, полученные с беспилотника, в детальные ортофотопланы, высокоточные трёхмерные модели местности и топографические планы масштабов 1:500–1:10 000.

    Мы с командой попробовали несколько разных дронов и в итоге остановились на «рабочей лошадке» DJI Phantom 4 PRO с несколькими модификациями. Первое и главное, что мы с ним сделали, - это оснастили его геодезическим GNSS-приёмником, который позволяет определять центры фотографирования с сантиметровой точностью.

    Стандартный его GPS обеспечивал точность порядка 15–20 метров. Для решения геодезических задач при такой точности нужны либо специальные кресты на земле, либо ещё какое-нибудь извращение вроде раскладывания бумажных тарелок по известным координатам.

    Мы делаем и проще, и сложнее: ставим наземную базовую станцию с точно известными координатами, и интегрируем в дрон дополнительный GNSS-приемник и устанавливаем внешнюю антенну. Например, начинали мы с MATRICE 600 c установленной на борту D-RTK системой фирмы DJI, которая была очень громоздкой, дорогой и не удобной для решения геодезических задач.

    Потом мы переделали более компактный DJI PHANTOM 4 PRO: удалось интегрировать дополнительное GNSS-оборудование в стандартный корпус. Общая масса беспилотника увеличилась примерно на 100 граммов. Время полёта немного пострадало, но некритично: набора из четырёх батарей хватает для выполнения съемки площадью 200–300 Га.

    Фантом дал одну важную возможность - основной набор стал умещаться в ручную кладь пассажирского самолёта. То есть мы можем теперь возить весь комплект оборудования с собой куда угодно очень и очень просто.

    Минимальный набор - модифицированный дрон (весь его комплект), геодезический GNSS -приёмник в качестве наземной базовой станции, ноутбук с программой планирования полётов, скачанной картой (для работы без Интернета) и прописанным под точку планом полётов, если была такая возможность заранее. Ещё нужны дополнительные батареи, зарядное устройство (или несколько) и генератор. Мы берём бензиновый генератор, который выполнен в виде кейса, он очень удобен для наших нужд. Либо инвертор для питания от двигателя автомобиля. Для некоторых регионов надо брать ещё обогрев (в частности, для аккумуляторов и рук).

    С одного аккумулятора можно отснять 50 Га с разрешением 2–5 сантиметров на пиксель.

    Работаем так: приезжаем на место с подробно прописанным заранее (в офисе) заданием для дрона. Мы используем UgCS (это профессиональный довольно дорогой софт для планирования полётов дронов, который в России продаёт и консультирует по интеграции и доработкам КРОК. Конечно, такой софт применим не только в геодезии, им могут пользоваться спасатели, агрономы, строители и т. п., но в этих областях я не силён, поэтому все вопросы - к коллегам из КРОК). В нём мы указываем границы района работ, поперечное перекрытие, высоту фотографирования, и дальше ПО само рассчитает маршрут полёта дрона с учетом особенностей рельефа местности. То есть UgCS нарезает всё как надо: с промежуточными посадками для замены батарей и остальным.

    Смотрим, нет ли каких-то неучтённых препятствий, затем ставим базовую станцию GNSS. Координаты наземных точек уточняются приёмником Topcon GR-5.

    Чтобы подключить автопилот из GNSS, мы соединяем дрон с пультом, пульт - с планшетом с управляющей программой DJI, а затем планшет - с ноутбуком. Настроить эту связку с ходу непросто. Тут мне существенно помогли коллеги из КРОК: установить, подогнать, протестить до запуска.

    Следующий момент в том, что примерно каждый третий объект находится там, где нет стабильного доступа в Интернет. С этим софт справляется. Но бывают и сложные участки, например, горы, где уже начинаются проблемы с распространением сигнала. Именно поэтому мы используем Фантомы: у них есть множество встроенных датчиков для обхода препятствий. Когда он теряет связь, то возвращается назад. Когда не может вернуться назад, то начинает садиться. И эти датчики помогают летать в сложных условиях, таких, как горная местность или в городе. У нас было несколько случаев, когда датчики препятствий помогли избежать аварийной ситуации. Например, в горах эмирата Фуджейра (ОАЭ) мы потеряли связь с дроном, и из-за ветра беспилотник не смог вернуться на точку взлёта. Тогда автопилот принял решение о посадке и по датчикам препятствия посадил дрон в расщелину между двумя склонами горного массива на сравнительно ровную площадку.

    Итог полёта дрона - фотографии вот в этих точках (это софт для обработки уже выделяет их центры):

    Данные GNSS-измерений скачиваются по Wi-Fi отдельно после завершения полёта, они хранятся на дроне и не транслируются на землю в реальном времени.

    Вот облако точек после классификации. Цветом выделены растительность, опоры, провода ЛЭП, здания и сооружения:

    А это уже 3D-модель по этому облаку:

    На этом коттеджном посёлке задание было простым: 5 см на пиксель, простой ландшафт, минимум деревьев, нет наводок. Мы получили ортофотоплан и совместили его с кадастровым планом:

    Он может использоваться для межевания, инвентаризации и кадастровой оценки земельных участков, оценки эффективности использования земельных ресурсов, проектирования развития территорий, проектно-изыскательских работ, реконструкции и развития дорожных сетей, мониторинга состояния наземных и подземных коммуникаций, трубопроводов, ЛЭП и т. п., мониторинга земель с целью охраны, экологического мониторинга границ и площадей земель, подверженных изменению, создания трехмерных моделей местности для ГИС.

    Почему UgCS? Потому что других вариантов на рынке особо и нет, всё остальное - любительского уровня. Очень удобно, что любой дрон можно выставить на задание, и он просто полетит: поддерживается вся линейка DJI включая Мавики и ещё с десяток популярных в геодезии дронов. Нет привязки к железу вообще. Очень хорошее планирование - из офиса. Нормальное управление с ноутбука джойстиком или CLICK&GO, хорошее геокодирование изображений для Photoscan или Pix4D. На рынке есть альтернативное ПО без необходимости таскать ноутбук, но с куда меньшим количеством возможностей. Ноутбук - это огромное преимущество, но одновременно и проклятие системы: он сильно усложняет командировки. Зимой всё это становится ещё сложнее из-за того, что батареи всей связки мёрзнут, и приходится работать в перчатках (что не очень точно). Но других вариантов пока нет: либо такие неудобства, либо ограниченные возможности.

    Вот пример результата трехмерной модели города:

    Вот ещё один объект - трехмерная модель карьера:

    Вот такая история.

    Выбор беспилотника

    Для начала определимся с задачей, которую пришлось решать в этой работе. Первая задача - построение 3D модели (ортофотоплана) достаточно большой территории сельскохозяйственных угодий одного из заказчиков, у которого по сути поля находятся в окружении лесов, или как мы шутили в последствии - полей, которые встречаются в лесу. Эта характерная ситуация для сельского хозяйства в Томской области, которая является чрезвычайно залесённой. Да посмотрите сами - всё станет понятно без слов.

    Большая территория и совершенно устаревшие данные по земельным отводам не дают объективной оценки состояния земель, поэтому собственникам земельных угодий становится не только интересно, но и выгодно понимать, какими ресурсами они владеют (или не владеют) на самом деле.


    Собственникам земель доступны вот такие допотопные карты-планшеты, склеенные из бумаги с данными по отводу земель 30-40 летней давности. Цветным даже нанесены данные по содержанию в земле питательных веществ, что является важнейшей для агронома информацией, которая также в большинстве случаев уже не соответствует действительности. Короче, век хоть XXI, по сути живем данными и картами середины прошлого века. Конечно, получить объективную и актуализированную информацию о состоянии угодий полезно не только для инвентаризации имеющейся земли, но и для ввода новых земель в оборот, за которые можно получить приличные субсидии от государства. Осталось только найти эти земли среди болот и лесов. Начинаем поиски.

    Для съемки таким больших территорий используется специальное промышленное летное оборудование - БПЛА самолетного типа (конструкция тип «крыло»). Эти аппараты позволяют за 1 полётную сессию покрывать до 1500 км 2 территории и получать снимки с необходимым качеством для дальнейшей постобработки. Выбор БПЛА на рынке достаточно большой. Как импортные, так и отечественные БПЛА на любой карман. Правда, дорогие и по моему мнению совершенно не оправдано. Но видно так диктует рынок. Цены от 1 млн. за достойный аппарат. Предлагаю немного прерваться и посмотреть короткое видео (2 мин 30 сек), которое я специально снял для читателей Хабра для этой статьи, чтобы сразу понять, что это за промышленный БПЛА и как это выглядит.

    Съемка с использованием БПЛА

    Самолет сам по себе никуда не полетит, если его не запустить в полет и не сделает того, что должен сделать. А что, собственно, должен делать БПЛА? Он должен строго следовать полётной инструкции и провести съемку в полном соответствие с планом съемки, который содержится в летном задании.

    Летное задание

    Летное задание – специализированная инструкция, состоящая из указаний операторам по проведению процесса съемки, содержит все необходимые требования, включая утверждение масштаба фотографирования и фокусного расстояния фотооборудования, формат аэрофотоснимка, заданные проценты продольного и поперечного перекрытий, размеры съемочного участка. По этим исходным данным определяют высоту и базис съемки, интервал между экспозициями, число аэрофотоснимков в маршруте и на съемочный участок, а также ориентировочное время, необходимое для аэрофотосъемки всего участка. При этом важно не забывать, что снимки должны быть в строгом соответствие с выбранным масштабом съемки.

    Что такое масштаб съемки?

    По масштабу аэросъемки условно подразделяют на сверхкрупномасштабные (крупнее 1:2000, разрешение до 20 см), крупномасштабные (от 1:2000 до 1:10000), среднемасштабные (от 1:10000 до 1:30000), мелкомасштабные (от 1: 30000 до 1:100000) и сверхмелкомасштабные (мельче 1:100000). Здесь и далее речь идет о соответствие размеров объектов в действительности, соотнесенные их изображению на цифровом снимке для 1 пикселя. То есть, к примеру, на сверхкрупномасштабном снимке 1:2000 изображение 1 пикселя соответствует объекту размером 20 см.


    Съемка местности с перекрытием

    Для того, чтобы получить качественную картографическую информацию и построить 3D модель местности, необходимо провести съемку территории с перекрытием, т.е. снимать участок земли так часто, чтобы последующий снимок как-бы «перекрывал» предыдущий, по аналогии с кровлей крыши, где каждая плитка накрывает часть предыдущей. То есть, съемка с БПЛА осуществляется так, как показано на рисунке - с перекрытием.


    А всю территорию надо разбить на маршруты, т.е. мы получаем n-количество снимков вдоль и поперек, соответственно с продольным и поперечным перекрытием, так как показано на следующем рисунке


    Величина продольного перекрытия между соседними аэрофотоснимками одного маршрута как правило в пределах 55-70 %, а поперечное - не менее 20%.

    Перекрытия имеют особенности. Грабли номер раз

    Перекрытия между соседними снимками одного маршрута, которые называются продольными (Px), имеют свою специфику. Слишком малые, так и слишком большие перекрытия снимков для задач построения 3D моделей территории не пригодны. Для получения стереоскопического (объемного) изображения в теории достаточно иметь продольное перекрытие в 50%. Однако из-за краевых эффектов и аберраций (искажений изображений) снимков продольное перекрытие несколько увеличивают. Большие перекрытия также недопустимы, так как это резко снижает объемность изображения, и, как следствие, ухудшают качество построение 3D моделей. При почти 100% перекрытии получаются два одинаковых снимка, у которых нет стереоскопического эффекта и это является не допустимым. Перекрытия между соседними снимками в равнинных условиях съемки должны находиться в пределах 55-70%, в горных условиях и при наличии существенных перепадов в рельефе местности перекрытие можно значительно увеличить вплоть до 80-90% без потери качества построения 3D модели местности.


    Такой вид съемки, который используется в большинстве случаев, относится к площадной съемкой с перекрытием.


    Перед началом работ проверяют все необходимое оборудование, материалы и полетные карты, проводят тренировку экипажей и составляют график полетов (прохождения маршрутов съемки) в соответствие с летными задачами, затем проверяют все необходимые расчеты параметров съемки.


    Таблица содержит все необходимые исходные данные для проведения аэрофотосъемки и расчета всех её параметров. Конечно, ввод этих данных идет в автоматическом режиме, но я приведу формулы расчета, чтобы иметь общее представление, что всегда полезно.

    Для получения необходимо разрешения снимков, съемку с БПЛА необходимо вести на строго определенной высоте полета H пол.


    где H пол - высота полета, м; GSD - разрешение пикселя, м/пкс; l х - размер матрицы камеры (по оси абсцисс), пкс.

    Расстояние между соседними снимками (В) для последующего расчета их количества по продольному маршруту определяется как


    где P x – продольное перекрытие, %; GSD – размер пикселя на местности.

    Ширина маршрута на местности (L M) зависит от размера матрицы (в направлении ординат) (l y) применяемой в комплексе с БПЛА цифровой камеры и определяется следующим соотношением:


    где l y – ширина матрицы по оси «y», пкс.

    Определить расстояние между смежными маршрутами L y съемки с условием поперечного перекрытия P y можно рассчитать по формуле


    где длина участка D x равна длине среднего маршрута в продольном направлении от левого края первого аэрофотоснимка до правого края последнего аэрофотоснимка с запасом на 1 снимок.

    Количество маршрутов N м вычисляют с учетом ширины участка D y , который измеряют в поперечном направлении посередине от верхней стороны снимка первого маршрута до нижней стороны снимка последнего маршрута с запасом в 1 маршрут.


    Суммарное количество снимков на исследуемый участок N уч определяют как общее количество снимков по всем маршрутам съемки, а минимальное полетное время съемки, которое, в частности, может использоваться для соответствующих экономических расчетов затрат на проведение работ, вычисляется по формуле:


    где V – средняя скорость БПЛА в процессе съемки территории.
    Конечно, это расчетное время съемки и оно никак не связано со временем реальной работы, которое в зависимости от количества разбросанных граблей по которым приходится шагать, может и на на пару порядков отличаться от расчетного, но все-же)

    Как говорилось выше, все необходимые вышеуказанные параметры съемки задаются в автоматическом режиме с учетом использования современного БПЛА оборудования, оснащенного специализированными контроллерами и современным программным обеспечением. Однако, при обеспечении внутреннего контроля работ необходимо проконтролировать точность введения исходных данных, а полученные снимки должны быть выборочно (либо целиком) проконтролированы на качество. Для этого необходимо вести (в бумажном или цифровом виде) дефектовочные карты проведенных съемок (оценка снимков проводится по 5-бальной шкале). Дефектовка проводится на месте, чтобы при необходимости переснять неудачные участки, чтобы не повторять командировку вновь.

    И немного о погоде. Очередные грабли

    Съемку земной поверхности осуществляют через толщу атмосферы, характеристики которой непостоянны. Состояние атмосферы определяет условия и результаты съемки. Физическое состояние атмосферы характеризуют ее прозрачность и рефракции лучей в ней, температура воздуха, атмосферное давление, влажность воздуха, облачность, перемещение воздушных масс. Наибольшее влияние на результативность съемки в видимом и ближнем ИК диапазонах спектра оказывают степень прозрачности атмосферы, освещенность и облачность.

    В слое атмосферы между земной поверхностью и съемочной системой, установленной на БПЛА, всегда в той или иной степени содержатся мельчайшие (0,01-1 мм) частицы газов, водяных паров, пыли, дыма. Они вызывают рассеяние света в атмосфере и обусловливают дополнительную яркость самого воздуха, чем снижают контрастность деталей земной поверхности. Свечение или мутность атмосферы за счет рассеяния света от взвешенных в воздухе частиц называют дымкой. При преобладании в атмосфере молекул газов и водяного пара сильнее рассеиваются лучи с короткой длиной волн и атмосферная дымка имеет преимущественно голубой или синий цвет. Если же преобладают взвешенные частицы пыли, дыма и других посторонних тел, дымкой в равной степени рассеиваются лучи всех цветов спектра и сама она принимает серый или белесый цвет. Такая дымка чаще бывает в районах с задымленностью от лесных пожаров и промышленных предприятий или в зонах распространения частиц пыли и песка.

    Аэрофотосъемка возможна и при высокой сплошной облачности, расположенной выше БПЛА, выполняющего съемку. Высокая сплошная облачность позволяет получать бестеневые аэрофотоснимки со смягченными тонами теней, в результате чего полог лесных насаждений просматривается глубже, лучше видны его затененные части.

    Для целей дешифрования лесной растительности, важное значение имеет влияние высоты Солнца в момент проведения съемки: чем оно выше, тем контрастнее выделяется соотношение между освещенными и затененными сторонами крон в пологе насаждений. Также более отчетливо отбрасываются тени.


    При высоте Солнца более 30° общий вид изображения полога насаждений яркий и пестрый, так как сомкнутые насаждения состоят из светлых крон и темного фона от затененных промежутков между кронами.

    Обычно съемку начинают не ранее чем через 2 ч после восхода Солнца и заканчивают за 3 часа до его захода. В большинстве случаев аэрофотосъемочное время дня ограничивается тремя-четырьмя часами, поскольку после 9-10 ч, особенно в лесных районах, появляется кучевая облачность, достигающая наибольшего развития к 13-15 ч. Не догма, наблюдение из собственного опыта.

    Прямым ограничением проведения съемок является наличие сильного дождя, снега, грозовых явлений, либо резких порывов ветра с горизонтальной скоростью более 10-15 м/с и вертикальными порывами более 3 м/с. Однако, не смотря на то, что современные промышленные БПЛА могут эксплуатироваться в условиях значительной ветровой нагрузки, целесообразно иметь системы метеорологического мониторинга полетных условий, которые должны сопровождаться контролем горизонтальной и вертикальной скорости ветра и влажности воздуха, так как влажность существенно влияет на плотность воздуха и, как следствие, на аэродинамические свойства БПЛА. Не смотря на то, что производители БПЛА пишут в рекламе, что их аппараты летают при практически любой погоде - лучше летные мероприятия проводить в нормальную погоду. Потерять БПЛА намного дороже, чем выждать подходящие метеоусловия. Ведь бОльшая часть таких аппаратов гибнут по двум причинам - раздолбайство операторов и неподходящая погода. То и другое является для производителей БПЛА «золотым дном», ведь дорогостоящие ремонты БПЛА тоже ооооочень доходный бизнес. Поэтому нельзя экономить на подготовке операторов и торопить события с желанием все быстро сделать. Это как раз тот случай, когда спешка и смех находятся в самой прямой зависимости.

    Осторожно, суровые законы!

    Представим, что вы имеете отличное оборудование, промышленные БПЛА и великолепных операторов, заказчиков работ, но все равно попали в тюрьму. Да, именно так, ведь несоблюдение требований законодательства к организации летных мероприятий и открытия воздушного пространства совершенно спокойно может привести к таким последствиям. Ничего не попишешь, в этом смысле в России придумано всё так, чтобы даже при условии соблюдения всех правил можно что-то не учесть. Вообще процесс получения официального разрешения на полеты (открытия воздушного пространства) еще тот концерт. Каждый случай специфичен. Общие же принципы таковы. Для осуществления летных мероприятий с использованием БПЛА необходимо строго руководствоваться требованиями законодательства. Основным документом для работы по открытию воздушного пространства является постановление Правительства РФ от 11 марта 2010 г. N 138 «Об утверждении Федеральных правил использования воздушного пространства Российской Федерации». Второй параграф Правил содержит определение БПЛА: беспилотный летательный аппарат - летательный аппарат, выполняющий полет без пилота (экипажа) на борту и управляемый в полете автоматически, оператором с пункта управления или сочетанием указанных способов.

    Таким образом, для выполнения требований Законодательства для обеспечение полетных мероприятий (в общем случае) необходимо выполнить ряд обязательных мероприятий. Необходимо подготовить Сообщение о плане полета беспилотного летательного аппарата (далее - сообщение о плане запуска). Сообщение представляет собой сведения о планируемой деятельности по использованию воздушного пространства, которые направляются пользователем воздушного пространства или его представителем в орган обслуживания воздушного движения (управления полетами) по авиационной наземной сети передачи данных и телеграфных сообщений, по сети Интернет или на бумажном носителе, включая факсимильное сообщение.

    Сообщение о плане запуска по авиационной наземной сети передачи данных и телеграфных сообщений, а также на бумажном носителе, включая факсимильное сообщение, направляется в виде формализованной телеграммы, состоящей из трех частей: адресной, информационной и подписной.

    Адресная и подписная части телеграммы заполняются в соответствии с установленными правилами адресования и передачи телеграфных сообщений.

    Информационная часть телеграммы заполняется в последовательности и по правилам, определенным Табелем сообщений о движении воздушных судов в Российской Федерации и требованием Законодательства.

    Сообщение о плане запуска по сети Интернет направляется путем заполнения информационной части плана полета воздушного судна на веб-сайте органа ОВД в последовательности и по правилам, определенным настоящим Табелем сообщений.

    Текст сообщения о плане запуска заполняется печатными буквами в соответствующих случаях латинского или русского алфавита. В виду динамично развивающего Законодательства в области использования воздушного пространства, указанные правила изменяются. Невыполнение или частичное выполнение указанных правил может привести к административной ответственности физических или юридических лиц, а в случае тяжких последствий – к уголовной ответственности в установленном в Законодательстве порядке.

    Требования к операторам БПЛА и руководителю полетов

    Современные профессиональные БПЛА представляют собой средства повышенной опасности. Наличие маршевых двигателей, существенный вес БПЛА и сложность эксплуатации накладывают определенные требования к квалификации операторов. Съемки залесенной территории в Сибирском регионе связана с опасностью попадания в зону действия лесных пожаров, дополнительным фактором опасности является наличие клещей и гнуса. Персонал должен строго соблюдать требования инструкции по ТБ оператора, работы выполнятся как минимум двумя операторами. Люди, выполняющие полевые летные работы, должны быть привиты от клещевого энцефалита, иметь специальную защитную одежду, удостоверение оператора БПЛА и гражданский паспорт, комплект разрешительных документов на открытие воздушного пространства, аптечку и средства связи. В зонах отсутствия или неустойчивости связи сотовых операторов – радиостанции УКВ и КВ диапазонов. При организации съемок с БПЛА в местах появления опасных животных руководитель полетов должен иметь средства для их отпугивания (шумовые патроны и спецсредства) или огнестрельное оружие (при наличии лицензии). В случае необходимости применения оружия данный факт сообщается правоохранительным органам и(или) специалистам лесного хозяйства для актирования случая.

    При появлении любых опасных явлений в зоне проведения полетов, они должны быть незамедлительно прекращены, а руководитель полетов должен предпринять все разумные усилия для обеспечения безопасности операторов и срочно покинуть опасное место, к примеру, при приближении очага лесного пожара.

    Ну вот примерно так происходит подготовка к проведению БПЛА съемки с помощью промышленного лётного оборудования. В последующих сериях (статьях) рассмотрим технологии обработки и интерпретации полученных БПЛА снимков с целью получения качественной картографической информации и 3D моделей местности. Также поговорим о дешифровке различных интересных объектов на снимках с БПЛА. Будет интересней! Хорошего дня!